题目链接

题意

给出一个混合图(有无向边,也有有向边),问能否通过确定无向边的方向,使得该图形成欧拉回路。

思路

这是一道混合图欧拉回路的模板题。

一张图要满足有欧拉回路,必须满足每个点的度数为偶数。

对于这道题,我们先随便给无向边定个向。这时能够形成欧拉回路的必须条件就是每个点的入度和出度之差为偶数。

在满足了这个条件之后,我们通过网络流来判断是否可以形成欧拉回路。

下面用\(rd\)表示入度,\(cd\)表示出度。

首先对于入度小于出度的点,我们从\(S\)向这个点连一条权值为\((cd - rd) / 2\)的边,表示我需要通过改变\((cd-rd)/2\)条边的方向,来使得当前点入度与出度相同。

相对的,对于入度大于出度的点,我们从这个点向T连一条权值为\((rd-cd)/2\)的边,表示我需要通过改变\((rd-cd)/2\)条边的方向,来使得当前点入度与出度相同。

对于原图中的无向边,我们就按照给他定的那个向连一条权值为\(1\)的边。表示我可以改变这条边的方向。

最后看一下是否可以满流即可。

代码

/*
* @Author: wxyww
* @Date: 2019-02-10 17:22:12
* @Last Modified time: 2019-02-10 17:31:12
*/
#include<cstdio>
#include<iostream>
#include<queue>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<ctime>
#include<bitset>
using namespace std;
typedef long long ll;
const int N = 10000,INF = 1e9;
ll read() {
ll x=0,f=1;char c=getchar();
while(c<'0'||c>'9') {
if(c=='-') f=-1;
c=getchar();
}
while(c>='0'&&c<='9') {
x=x*10+c-'0';
c=getchar();
}
return x*f;
}
struct node {
int v,w,nxt;
}e[N];
int head[N],ejs;
void add(int u,int v,int w) {
e[++ejs].v = v;e[ejs].w = w;e[ejs].nxt = head[u];head[u] = ejs;
e[++ejs].v = u;e[ejs].w = 0;e[ejs].nxt = head[v];head[v] = ejs;
}
int rd[N],cd[N];
int dep[N];
int S,T,cur[N];
queue<int>q;
int bfs() {
memset(dep,0,sizeof(dep));
while(!q.empty()) q.pop();
dep[S] = 1;q.push(S);
while(!q.empty()) {
int u = q.front();q.pop();
for(int i = head[u];i;i = e[i].nxt) {
int v = e[i].v;
if(!dep[v] && e[i].w) {
q.push(v);
dep[v] = dep[u] + 1;
if(v == T) return 1;
}
}
}
return 0;
}
int dfs(int u,int now) {
if(u == T) return now;
int ret = 0;
for(int &i = cur[u];i;i = e[i].nxt) {
int v = e[i].v;
if(dep[v] == dep[u] + 1 && e[i].w) {
int k = dfs(v,min(now - ret,e[i].w));
e[i].w -= k;
e[i ^ 1].w += k;
ret += k;
if(now == ret) return ret;
}
}
return ret;
}
int dinic() {
int ans = 0;
while(bfs()) {
memcpy(cur,head,sizeof(cur));
ans += dfs(S,INF);
}
return ans;
}
int main() {
int TT = read();
while(TT--) {
int n = read(),m = read();
S = n + 1,T = S + 1;
ejs = 1;memset(head,0,sizeof(head));
memset(rd,0,sizeof(rd));memset(cd,0,sizeof(cd));
for(int i = 1;i <= m;++i) {
int u = read(),v = read(),k = read();
rd[v]++;cd[u]++;
if(k == 1) continue;
add(u,v,1);
}
int bz = 0;
for(int i = 1;i <= n;++i) {
if((rd[i] + cd[i]) & 1) {
puts("impossible");
bz = 1;break;
}
if(rd[i] > cd[i]) add(i,T,(rd[i] - cd[i]) / 2);
if(cd[i] > rd[i]) add(S,i,(cd[i] - rd[i]) / 2);
}
if(bz == 1) continue;
dinic();
for(int i = head[S];i;i = e[i].nxt) {
if(e[i].w) {
puts("impossible");bz = 1;break;
}
}
if(bz == 1) continue;
puts("possible");
} return 0;
}

poj1637 Sightseeing tour(混合图欧拉回路)的更多相关文章

  1. POJ1637 Sightseeing tour (混合图欧拉回路)(网络流)

                                                                Sightseeing tour Time Limit: 1000MS   Me ...

  2. poj1637 Sightseeing tour 混合图欧拉回路判定

    传送门 第一次做这种题, 尽管ac了但是完全不知道为什么这么做. 题目就是给一些边, 有向边与无向边混合, 问你是否存在欧拉回路. 做法是先对每个点求入度和出度, 如果一条边是无向边, 就随便指定一个 ...

  3. POJ 1637 Sightseeing tour ★混合图欧拉回路

    [题目大意]混合图欧拉回路(1 <= N <= 200, 1 <= M <= 1000) [建模方法] 把该图的无向边随便定向,计算每个点的入度和出度.如果有某个点出入度之差为 ...

  4. POJ1637:Sightseeing tour(混合图的欧拉回路)

    Sightseeing tour Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10581   Accepted: 4466 ...

  5. poj 1637 Sightseeing tour 混合图欧拉回路 最大流 建图

    题目链接 题意 给定一个混合图,里面既有有向边也有无向边.问该图中是否存在一条路径,经过每条边恰好一次. 思路 从欧拉回路说起 首先回顾有向图欧拉回路的充要条件:\(\forall v\in G, d ...

  6. POJ 1637 Sightseeing tour (混合图欧拉回路)

    Sightseeing tour   Description The city executive board in Lund wants to construct a sightseeing tou ...

  7. poj1637Sightseeing tour(混合图欧拉回路)

    题目请戳这里 题目大意:求混合图欧拉回路. 题目分析:最大流.竟然用网络流求混合图的欧拉回路,涨姿势了啊啊.. 其实仔细一想也是那么回事.欧拉回路是遍历所有边一次又回到起点的回路.双向图只要每个点度数 ...

  8. poj1637 Sightseeing tour[最大流+欧拉回路]

    混合图的欧拉回路定向问题. 顺便瞎说几句,有向图定欧拉回路的充要条件是每个点入度等于出度,并且图联通.无向图的话只要联通无奇点即可. 欧拉路径的确定应该是无向图联通且奇点数0个或2个,有向图忘了,好像 ...

  9. POJ 1637 Sightseeing tour(混合图的欧拉回路)

    题目链接 建个图,套个模板. #include <cstdio> #include <cstring> #include <iostream> #include & ...

随机推荐

  1. springMVC中@RequestParam和@RequestBody的作用

    @RequestParam和@RequestBody是什么区别,估计很多人还是不太清楚, 因为一般用@ RequestParam就足够传入参数了,要说他们区别,就需要知道contentType是什么? ...

  2. 移动端Web界面滚动touch事件

    解决办法一: elem.addEventListener( 'touchstart', fn, { passive: false } ); 解决办法二: * { touch-action: pan-y ...

  3. Golang的聊天服务器实践(群聊,广播)(一)

    其实从上学开始就一直想写一个im. 最近深入go,真是学会了太多,感觉人森虽然苦短,但是也不能只用python.很多知识是不用编译型语言无法了解的. 该来的还是会来,现在会一步一步用go把这个服务器完 ...

  4. 老男孩python学习自修第四天【字典的使用】

    dict = {key1:value1, key2:value2} 定义字典 dict[key] = value 设置字典中指定健的值 dict.pop(key) 删除字典中指定健 dict.popi ...

  5. Log4j2配置与使用

    依赖包: <!-- https://mvnrepository.com/artifact/org.apache.logging.log4j/log4j-api --> <depend ...

  6. Opencv画图操作

    1. 画矩形 MyRect rect;rect.left = 5;rect.top = 5;rect.right = 100;rect.bottom = 100;IplImage * pColorIm ...

  7. U盘快速启动热键

    各个品牌电脑U盘快速启动热键如下:

  8. WC2019 题目集

    最近写的一些 WC2019 上讲的一些题.还是怕忘了,写点东西记录一下. LOJ2983 「WC2019」数树 题意 本题包含三个问题: 问题 0:已知两棵 \(n\) 个节点的树的形态(两棵树的节点 ...

  9. cf351B Jeff and Furik (树状数组)

    逆序对数=0的时候,这个数列是有序的 然后交换相邻的,看哪个比较大,逆序对数会加1或减1 Jeff用的是最优策略所以他肯定让逆序对数-1 设f[i]表示Jeff操作前,逆序对数为i,最终的期望次数 那 ...

  10. HDU6341 Let Sudoku Rotate (杭电多校4J)

    给一个由4*4个4*4的小格组成数独,这些数独是由一个块逆时针旋转得来的,所以要还原的话就模拟出顺时针的过程,先把里面的字母转化成数字,然后从第一个块开始枚举,每个dfs和之前枚举的已经满足条件的块, ...