吴恩达机器学习笔记38-决策下一步做什么(Deciding What to Do Next Revisited)
我们已经讨论了模型选择问题,偏差和方差的问题。
那么这些诊断法则怎样帮助我们判断,哪些方法可能有助于改进学习算法的效果,而哪些可
能是徒劳的呢?
让我们再次回到最开始的例子,在那里寻找答案,这就是我们之前的例子。回顾 1.1
中提出的六种可选的下一步,让我们来看一看我们在什么情况下应该怎样选择:
1. 获得更多的训练实例——解决高方差
2. 尝试减少特征的数量——解决高方差
3. 尝试获得更多的特征——解决高偏差
4. 尝试增加多项式特征——解决高偏差
5. 尝试减少正则化程度λ——解决高偏差
6. 尝试增加正则化程度λ——解决高方差
(欠拟合改进方法:增加feature;减小lambda
过拟合改进方法:增加样本数;引入正则化;减少feature;增加lambda)

使用较小的神经网络,类似于参数较少的情况,容易导致高偏差和欠拟合,但计算代
价较小;
使用较大的神经网络,类似于参数较多的情况,容易导致高方差和过拟合,虽然计算
代价比较大,但是可以通过正则化手段来调整而更加适应数据;通常选择较大的神经网络并采用正则化处理会比采用较小的神经网络效果要好。
对于神经网络中的隐藏层的层数的选择,通常从一层开始逐渐增加层数,为了更好地
作选择,可以把数据分为训练集、交叉验证集和测试集,针对不同隐藏层层数的神经网络训练神经网络, 然后选择交叉验证集代价最小的神经网络。
吴恩达机器学习笔记38-决策下一步做什么(Deciding What to Do Next Revisited)的更多相关文章
- 吴恩达机器学习笔记(六) —— 支持向量机SVM
主要内容: 一.损失函数 二.决策边界 三.Kernel 四.使用SVM (有关SVM数学解释:机器学习笔记(八)震惊!支持向量机(SVM)居然是这种机) 一.损失函数 二.决策边界 对于: 当C非常 ...
- [吴恩达机器学习笔记]12支持向量机2 SVM的正则化参数和决策间距
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.2 大间距的直观理解- Large Margin I ...
- [吴恩达机器学习笔记]12支持向量机3SVM大间距分类的数学解释
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.3 大间距分类背后的数学原理- Mathematic ...
- Coursera-AndrewNg(吴恩达)机器学习笔记——第三周
一.逻辑回归问题(分类问题) 生活中存在着许多分类问题,如判断邮件是否为垃圾邮件:判断肿瘤是恶性还是良性等.机器学习中逻辑回归便是解决分类问题的一种方法.二分类:通常表示为yϵ{0,1},0:&quo ...
- 吴恩达机器学习笔记 —— 7 Logistic回归
http://www.cnblogs.com/xing901022/p/9332529.html 本章主要讲解了逻辑回归相关的问题,比如什么是分类?逻辑回归如何定义损失函数?逻辑回归如何求最优解?如何 ...
- [吴恩达机器学习笔记]13聚类K-means
13.聚类 觉得有用的话,欢迎一起讨论相互学习~Follow Me 13.1无监督学习简介 从监督学习到无监督学习 在一个典型的监督学习中,我们有一个有标签的训练集,我们的目标是找到能够区分正样本和负 ...
- [吴恩达机器学习笔记]12支持向量机5SVM参数细节
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.5 SVM参数细节 标记点选取 标记点(landma ...
- [吴恩达机器学习笔记]12支持向量机1从逻辑回归到SVM/SVM的损失函数
12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.1 SVM损失函数 从逻辑回归到支持向量机 为了描述 ...
- [吴恩达机器学习笔记]11机器学习系统设计3-4/查全率/查准率/F1分数
11. 机器学习系统的设计 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 11.3 偏斜类的误差度量 Error Metr ...
随机推荐
- IDEA 开发环境中设置Subversion,遇到svn安装路径包含空格无法使用版本控制的解决办法
假如你的svn.exe的安装位置是:C:\Program Files\TortoiseSVN\bin\svn.exe,路径中包含空格. 1.File->Settings->Version ...
- Linux驱动之内核自带的S3C2440的LCD驱动分析
先来看一下应用程序是怎么操作屏幕的:Linux是工作在保护模式下,所以用户态进程是无法象DOS那样使用显卡BIOS里提供的中断调用来实现直接写屏,Linux抽象出FrameBuffer这个设备来供用户 ...
- 人脸识别1:n对比 (一)
本项目采用了 Face++人脸识别 第三方接口,实现了自选本地手机相册图片上传人脸(faceSet中添加人脸) 和 自选本地手机相册图片寻找出集合中相似度最高的一个face,可返回比对相似度等信息. ...
- 探索未知种族之osg类生物---渲染遍历之裁剪三
前言 在osgUtil::CullVisitor,我们发现apply函数的重载中,有CullVisitor::apply(Group& node),CullVisitor::apply(Swi ...
- tmux使用(程序员适用)
原文:http://jack-boy.iteye.com/blog/1586908 tmux基本使用 tmux是一个优秀的终端复用软件,即使非正常掉线,也能保证当前的任务运行,这一点对于远程S ...
- Jenkins自定义变量共享
https://www.cnblogs.com/junneyang/p/5239480.html https://www.cnblogs.com/Rocky_/p/8317156.html https ...
- HTTP之状态码
状态代码有三位数字组成,第一个数字定义了响应的类别,共分五种类别: 1xx:指示信息--表示请求已接收,继续处理 2xx:成功--表示请求已被成功接收.理解.接受 3xx:重定向--要完成请求必须进行 ...
- flex布局嵌套之高度自适应
查遍各大资源无任何flex嵌套布局的例子,经过自己折腾完成了项目中的高度自适应需求(更多应用于前端组件) 效果图: html代码:(关键地方已经用颜色特别标识 ^_^) <!DOCTYPE ht ...
- @无痕客 https://www.cnblogs.com/wuhenke/archive/2012/12/24/2830530.html 通篇引用
无痕客 https://www.cnblogs.com/wuhenke/archive/2012/12/24/2830530.html 关于Async与Await的FAQ 关于Async与Await的 ...
- ELK的文档搭建
一.安装elasticsearch 官网:https://www.elastic.co/guide/index.html https://www.elastic.co/guide/en/elastic ...