●BZOJ 2005 NOI 2010 能量采集
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=2005
题解:
一个带有容斥思想的递推。
%%%
首先,对于一个点 (x,y) 在路径 (0,0)->(x,y)上,经过的点数为 GCD(x,y)-1
所以改点的贡献为 2*GCD(x,y)-1
N M
那么,ANS = ∑ ∑(2*GCD(i,j)-1)
i=1 j=1
显然超时。
考虑到 GCD<=100000,
那么是否可以求出 f[i] 表示 GCD==i的点对 (x,y)有多少个。
然后用f[i]去得出答案 (ans+=f[i]*(2*i-1))?
接下来就是神奇的递推了。
f[i]=(N/i)*(M/i) - f[i*k] (i*k<=min(N,M))
上式中 (N/i)*(M/i) 求得的是 有i这个公约数的点对(x,y)的个数
因为这些点对的最大公约数GCD可能为 i,2i,3i......
所以减掉f[2i],f[3i],f[4i]......就得到了f[i].
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#define ll long long
using namespace std;
ll f[100005];
ll N,M,K,ans;
int main()
{
freopen("energy.in","r",stdin);
freopen("energy.out","w",stdout);
cin>>N>>M; K=min(N,M);
for(int i=K;i>=1;i--){
f[i]=(N/i)*(M/i);
for(int j=2;i*j<=K;j++)
f[i]-=f[i*j];
ans+=f[i]*(2*i-1);
}
printf("%lld",ans);
return 0;
}
2.Möbius inversion formula
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 100500
using namespace std;
int mu[MAXN],pmu[MAXN];
void Sieve(){
static bool np[MAXN];
static int prime[MAXN],pnt;
mu[1]=pmu[1]=1;
for(int i=2;i<=100000;i++){
if(!np[i]) prime[++pnt]=i,mu[i]=-1;
for(int j=1;j<=pnt&&i<=100000/prime[j];j++){
np[i*prime[j]]=1;
if(i%prime[j]) mu[i*prime[j]]=-mu[i];
else break;
}
pmu[i]=pmu[i-1]+mu[i];
}
}
long long f(int n,int m){
long long ret=0; int mini=min(n,m);
for(int i=1,last;i<=mini;i=last+1){
last=min(n/(n/i),m/(m/i));
ret+=1ll*(pmu[last]-pmu[i-1])*(n/i)*(m/i);
}
return ret;
}
int main(){
Sieve();
int n,m,mini; long long ans=0;
scanf("%d%d",&n,&m); mini=min(n,m);
for(int g=1;g<=mini;g++)
ans+=(2*g-1)*f(n/g,m/g);
printf("%lld\n",ans);
return 0;
}
●BZOJ 2005 NOI 2010 能量采集的更多相关文章
- [bzoj 2005][NOI 2010]能量采集(容斥原理+递推)
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2005 分析:首先易得ans=∑gcd(x,y)*2+1 然后我就布吉岛了…… 上网搜了下题解, ...
- bzoj 2005 NOI 2010 能量采集
我们发现对于一个点(x,y),与(0,0)连线上的点数是gcd(x,y)-1 那么这个点的答案就是2*gcd(x,y)-1,那么最后的答案就是所有点 的gcd值*2-n*m,那么问题转化成了求每个点的 ...
- bzoj 2005 & 洛谷 P1447 [ Noi 2010 ] 能量采集 —— 容斥 / 莫比乌斯反演
题目:bzoj 2005 https://www.lydsy.com/JudgeOnline/problem.php?id=2005 洛谷 P1447 https://www.luogu.org/ ...
- 【BZOJ 2005】[Noi2010]能量采集
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
- 【BZOJ 2005】[Noi2010]能量采集 (容斥原理| 欧拉筛+ 分块)
能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋 ...
- [NOI 2010]能量采集
Description 题库链接 给你一个 \(n\times m\) 的坐标轴.对于坐标轴的每一个正整数整点 \((x,y)\) 其对答案产生的贡献为 \(2k+1\) ,其中 \(k\) 表示这个 ...
- [BZOJ 2006] [NOI 2010]超级钢琴(贪心+ST表+堆)
[BZOJ 2006] [NOI 2010]超级钢琴(贪心+ST表+堆) 题面 给出一个长度为n的序列,选k段长度在L到R之间的区间,一个区间的值等于区间内所有元素之的和,使得k个区间的值之和最大.区 ...
- BZOJ 2015:[Noi2010]能量采集(数论+容斥原理)
2005: [Noi2010]能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物 ...
- ●BZOJ 2006 NOI 2010 超级钢琴
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2006 题解: RMQ + 优先队列 (+ 前缀) 记得在一两个月前,一次考试考了这个题目的简 ...
随机推荐
- python中使用flask时遇到的markupsafe._compat包缺失的问题与解决
环境:windows7 + python3.6.0 在尝试使用python的flask时,按照flask的tutorial操作,装好flask.venv后,对tutorial中的hello.py进行运 ...
- C程序第一次作业
1-1 计算两数的和与差 1 设计思路 (1)主要描述题目算法 第一步:利用指针psum接收sum的地址,指针pdiff接收diff的地址,因此 * psum为sum, * pdiff为diff. 第 ...
- 201621123043 《Java程序设计》第8周学习总结
1. 本周学习总结 2. 书面作业 1. ArrayList代码分析 1.1 解释ArrayList的contains源代码 contains的源代码如下 public boolean contain ...
- day-1 用python编写一个简易的FTP服务器
从某宝上购买了一份<Python神经网络深度学习>课程,按照视频教程,用python语言,写了一个简易的FTP服务端和客户端程序,以前也用C++写过聊天程序,编程思路差不多,但是pytho ...
- 儿童节,我们从零开始——Python入门资源推荐
原创 2017-06-01 玄魂工作室 玄魂工作室 今天是六一儿童节,首先祝所有的小朋友身体健康,能永远生活在一个没有战争,没有压迫的世界里,永远快乐. 上一篇文章,很多人都对Python的各种书籍感 ...
- jenkins简单安装及配置(Windows环境)
jenkins是一款跨平台的持续集成和持续交付.基于Java开发的开源软件,提供任务构建,持续集成监控的功能,可以使开发测试人员更方便的构建软件项目,提高工作效率. Windows平台下,一般安装方法 ...
- 图数据库orientDB(1-2)例子
http://gog.orientdb.com/index.html#/infotab 小朱25岁,出生在教师家庭并且有个姐姐小田,他现在奋斗在帝都. 那么SQL是这样滴!!! CREATE VER ...
- 新概念英语(1-17)How do you do ?
Is there a problem wtih the Customers officer? What are Michael Baker and Jeremy Short's jobs? A:Com ...
- MySQL命令(逐步更新ing)
启动mysql 开启: /etc/init.d/mysqld start关闭: /etc/init.d/mysqld stop重启: /etc/init.d/mysqld restart 查看m ...
- java中的interface
转载: Java不支持多重继承,即一个类只能有一个父类 为了克服单继承的缺点,Java使用了接口,一个类可以实现多个接口 接口是抽象方法和常量值定义的集合,是一种特殊的抽象类接口中只包含常量和方法的定 ...