●BZOJ 2005 NOI 2010 能量采集
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=2005
题解:
一个带有容斥思想的递推。
%%%
首先,对于一个点 (x,y) 在路径 (0,0)->(x,y)上,经过的点数为 GCD(x,y)-1
所以改点的贡献为 2*GCD(x,y)-1
N M
那么,ANS = ∑ ∑(2*GCD(i,j)-1)
i=1 j=1
显然超时。
考虑到 GCD<=100000,
那么是否可以求出 f[i] 表示 GCD==i的点对 (x,y)有多少个。
然后用f[i]去得出答案 (ans+=f[i]*(2*i-1))?
接下来就是神奇的递推了。
f[i]=(N/i)*(M/i) - f[i*k] (i*k<=min(N,M))
上式中 (N/i)*(M/i) 求得的是 有i这个公约数的点对(x,y)的个数
因为这些点对的最大公约数GCD可能为 i,2i,3i......
所以减掉f[2i],f[3i],f[4i]......就得到了f[i].
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#define ll long long
using namespace std;
ll f[100005];
ll N,M,K,ans;
int main()
{
freopen("energy.in","r",stdin);
freopen("energy.out","w",stdout);
cin>>N>>M; K=min(N,M);
for(int i=K;i>=1;i--){
f[i]=(N/i)*(M/i);
for(int j=2;i*j<=K;j++)
f[i]-=f[i*j];
ans+=f[i]*(2*i-1);
}
printf("%lld",ans);
return 0;
}
2.Möbius inversion formula
#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 100500
using namespace std;
int mu[MAXN],pmu[MAXN];
void Sieve(){
static bool np[MAXN];
static int prime[MAXN],pnt;
mu[1]=pmu[1]=1;
for(int i=2;i<=100000;i++){
if(!np[i]) prime[++pnt]=i,mu[i]=-1;
for(int j=1;j<=pnt&&i<=100000/prime[j];j++){
np[i*prime[j]]=1;
if(i%prime[j]) mu[i*prime[j]]=-mu[i];
else break;
}
pmu[i]=pmu[i-1]+mu[i];
}
}
long long f(int n,int m){
long long ret=0; int mini=min(n,m);
for(int i=1,last;i<=mini;i=last+1){
last=min(n/(n/i),m/(m/i));
ret+=1ll*(pmu[last]-pmu[i-1])*(n/i)*(m/i);
}
return ret;
}
int main(){
Sieve();
int n,m,mini; long long ans=0;
scanf("%d%d",&n,&m); mini=min(n,m);
for(int g=1;g<=mini;g++)
ans+=(2*g-1)*f(n/g,m/g);
printf("%lld\n",ans);
return 0;
}
●BZOJ 2005 NOI 2010 能量采集的更多相关文章
- [bzoj 2005][NOI 2010]能量采集(容斥原理+递推)
题目:http://www.lydsy.com/JudgeOnline/problem.php?id=2005 分析:首先易得ans=∑gcd(x,y)*2+1 然后我就布吉岛了…… 上网搜了下题解, ...
- bzoj 2005 NOI 2010 能量采集
我们发现对于一个点(x,y),与(0,0)连线上的点数是gcd(x,y)-1 那么这个点的答案就是2*gcd(x,y)-1,那么最后的答案就是所有点 的gcd值*2-n*m,那么问题转化成了求每个点的 ...
- bzoj 2005 & 洛谷 P1447 [ Noi 2010 ] 能量采集 —— 容斥 / 莫比乌斯反演
题目:bzoj 2005 https://www.lydsy.com/JudgeOnline/problem.php?id=2005 洛谷 P1447 https://www.luogu.org/ ...
- 【BZOJ 2005】[Noi2010]能量采集
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
- 【BZOJ 2005】[Noi2010]能量采集 (容斥原理| 欧拉筛+ 分块)
能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋 ...
- [NOI 2010]能量采集
Description 题库链接 给你一个 \(n\times m\) 的坐标轴.对于坐标轴的每一个正整数整点 \((x,y)\) 其对答案产生的贡献为 \(2k+1\) ,其中 \(k\) 表示这个 ...
- [BZOJ 2006] [NOI 2010]超级钢琴(贪心+ST表+堆)
[BZOJ 2006] [NOI 2010]超级钢琴(贪心+ST表+堆) 题面 给出一个长度为n的序列,选k段长度在L到R之间的区间,一个区间的值等于区间内所有元素之的和,使得k个区间的值之和最大.区 ...
- BZOJ 2015:[Noi2010]能量采集(数论+容斥原理)
2005: [Noi2010]能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物 ...
- ●BZOJ 2006 NOI 2010 超级钢琴
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2006 题解: RMQ + 优先队列 (+ 前缀) 记得在一两个月前,一次考试考了这个题目的简 ...
随机推荐
- B-day5
1.昨天的困难,今天解决的进度,以及明天要做的事情 昨天的困难:昨天虽然完成了风险数据的图表统计,但是界面风格仍然不太满意,还在抓紧调试中:还有登录页的背景图,在想应该如何设计, 什么样的风格才好. ...
- UI事务重叠引发的crash
在ios开发的世界里,通过动画来切换界面使我们早就习以为常的事情,但动画将一个原本同步执行的事务,变成一个异步事务,并由此引发了一系列的陷阱. 最近对公司产品的crashlytics报告进行了一些分析 ...
- Ubuntu登陆密码忘记
在VMware中安装了Ubuntu 10.04,经过了一段时间,再次登录的时候居然进不去了, 一开始不知道怎样在虚拟机中进入到Grub启动界面,网上搜索了一番,按照以下步骤重新为用户设定了新密码. 重 ...
- 201421123042 《Java程序设计》第3周学习总结
#Week03-面向对象入门 1. 本周学习总结 1.1写出你认为本周学习中比较重要的知识点关键词,如类.对象.封装等 本周学习关键词:类,对象,封装,关键词:final,this,statis. 1 ...
- 【作业】HansBug的前三次OO作业分析与小结
OO课程目前已经进行了三次的作业,容我在本文中做一点微小的工作. 第一次作业 第一次作业由于难度不大,所以笔者程序实际上写的也比较随意一些.(点击就送指导书~) 类图 程序的大致结构如下: 代码分析 ...
- IDEA之Jrebel插件激活
问题: 码农日常中,热部署是必不可少的,而jrebel插件很好的实现热部署功能. IDEA下载jrebel插件,可以免费试用15天,但之后就无法使用.因为Jrebel是收费的. 解决方法: 楼主也是百 ...
- 消除ExtJS6的extjs-trila字样
- 使用 HttpClient 请求 Web Api
1.获取 post 请求 body 内容 [HttpPost] public string GetId() { //如果方法参数里面有 [FromBody],则需要重新调整内容指针,再进行读取. // ...
- ELK学习总结(2-3)Mget获取多个文档
mget 获取多个文档 1.curl 命令格式:mget获取多个文档: curl 'localhost:9200/_mget' -d '{ "docs":[ { " ...
- 新概念英语(1-73)The way to King Street
The way to King Street 到国王街的走法Why did the man need a phrasebook?Last week Mrs. Mills went to London. ...