学习TensorFlow,保存学习到的网络结构参数并调用
在深度学习中,不管使用那种学习框架,我们会遇到一个很重要的问题,那就是在训练完之后,如何存储学习到的深度网络的参数?在测试时,如何调用这些网络参数?针对这两个问题,本篇博文主要探索TensorFlow如何解决他们?本篇博文分为三个部分,第一是讲解tensorflow相关的函数,第二是代码例程,第三是运行结果。
一 tensorflow相关的函数
我们说的这两个功能主要由一个类来完成,class tf.train.Saver
saver = tf.train.Saver() save_path = saver.save(sess, model_path) load_path = saver.restore(sess, model_path)
saver = tf.train.Saver() 由类创建对象saver,用于保存和调用学习到的网络参数,参数保存在checkpoints里
save_path = saver.save(sess, model_path) 保存学习到的网络参数到model_path路径中
load_path = saver.restore(sess, model_path) 调用model_path路径中的保存的网络参数到graph中
二 代码例程
'''
Save and Restore a model using TensorFlow.
This example is using the MNIST database of handwritten digits
(http://yann.lecun.com/exdb/mnist/)
Author: Aymeric Damien
Project: https://github.com/aymericdamien/TensorFlow-Examples/
'''
# Import MINST data
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
import tensorflow as tf
# Parameters
learning_rate = 0.001
batch_size = 100
display_step = 1
model_path = "/home/lei/TensorFlow-Examples-master/examples/4_Utils/model.ckpt"
# Network Parameters
n_hidden_1 = 256 # 1st layer number of features
n_hidden_2 = 256 # 2nd layer number of features
n_input = 784 # MNIST data input (img shape: 28*28)
n_classes = 10 # MNIST total classes (0-9 digits)
# tf Graph input
x = tf.placeholder("float", [None, n_input])
y = tf.placeholder("float", [None, n_classes])
# Create model
def multilayer_perceptron(x, weights, biases):
# Hidden layer with RELU activation
layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])
layer_1 = tf.nn.relu(layer_1)
# Hidden layer with RELU activation
layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])
layer_2 = tf.nn.relu(layer_2)
# Output layer with linear activation
out_layer = tf.matmul(layer_2, weights['out']) + biases['out']
return out_layer
# Store layers weight & bias
weights = {
'h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
'h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
'out': tf.Variable(tf.random_normal([n_hidden_2, n_classes]))
}
biases = {
'b1': tf.Variable(tf.random_normal([n_hidden_1])),
'b2': tf.Variable(tf.random_normal([n_hidden_2])),
'out': tf.Variable(tf.random_normal([n_classes]))
}
# Construct model
pred = multilayer_perceptron(x, weights, biases)
# Define loss and optimizer
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Initializing the variables
init = tf.initialize_all_variables()
# 'Saver' op to save and restore all the variables
saver = tf.train.Saver()
# Running first session
print "Starting 1st session..."
with tf.Session() as sess:
# Initialize variables
sess.run(init)
# Training cycle
for epoch in range(3):
avg_cost = 0.
total_batch = int(mnist.train.num_examples/batch_size)
# Loop over all batches
for i in range(total_batch):
batch_x, batch_y = mnist.train.next_batch(batch_size)
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={x: batch_x,
y: batch_y})
# Compute average loss
avg_cost += c / total_batch
# Display logs per epoch step
if epoch % display_step == 0:
print "Epoch:", '%04d' % (epoch+1), "cost=", \
"{:.9f}".format(avg_cost)
print "First Optimization Finished!"
# Test model
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
# Calculate accuracy
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print "Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels})
# Save model weights to disk
save_path = saver.save(sess, model_path)
print "Model saved in file: %s" % save_path
# Running a new session
print "Starting 2nd session..."
with tf.Session() as sess:
# Initialize variables
sess.run(init)
# Restore model weights from previously saved model
load_path = saver.restore(sess, model_path)
print "Model restored from file: %s" % save_path
# Resume training
for epoch in range(7):
avg_cost = 0.
total_batch = int(mnist.train.num_examples / batch_size)
# Loop over all batches
for i in range(total_batch):
batch_x, batch_y = mnist.train.next_batch(batch_size)
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={x: batch_x,
y: batch_y})
# Compute average loss
avg_cost += c / total_batch
# Display logs per epoch step
if epoch % display_step == 0:
print "Epoch:", '%04d' % (epoch + 1), "cost=", \
"{:.9f}".format(avg_cost)
print "Second Optimization Finished!"
# Test model
correct_prediction = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
# Calculate accuracy
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
print "Accuracy:", accuracy.eval(
{x: mnist.test.images, y: mnist.test.labels})
三 运行结果
参考资料:
https://www.tensorflow.org/versions/r0.9/api_docs/python/state_ops.html#Saver
学习TensorFlow,保存学习到的网络结构参数并调用的更多相关文章
- (转) TensorFlow深度学习,一篇文章就够了
TensorFlow深度学习,一篇文章就够了 2016/09/22 · IT技术 · TensorFlow, 深度学习 分享到:6 原文出处: 我爱计算机 (@tobe迪豪 ) 作者: 陈迪 ...
- 学习TensorFlow,TensorBoard可视化网络结构和参数
在学习深度网络框架的过程中,我们发现一个问题,就是如何输出各层网络参数,用于更好地理解,调试和优化网络?针对这个问题,TensorFlow开发了一个特别有用的可视化工具包:TensorBoard,既可 ...
- TensorFlow深度学习,一篇文章就够了
http://blog.jobbole.com/105602/ 作者: 陈迪豪,就职小米科技,深度学习工程师,TensorFlow代码提交者. TensorFlow深度学习框架 Google不仅是大数 ...
- TensorFlow迁移学习的识别花试验
最近学习了TensorFlow,发现一个模型叫vgg16,然后搭建环境跑了一下,觉得十分神奇,而且准确率十分的高.又上了一节选修课,关于人工智能,老师让做一个关于人工智能的试验,于是觉得vgg16很不 ...
- 问题集录--TensorFlow深度学习
TensorFlow深度学习框架 Google不仅是大数据和云计算的领导者,在机器学习和深度学习上也有很好的实践和积累,在2015年年底开源了内部使用的深度学习框架TensorFlow. 与Caffe ...
- 没有博士学位,照样玩转TensorFlow深度学习
教程 | 没有博士学位,照样玩转TensorFlow深度学习 机器之心2017-01-24 12:32:22 程序设计 谷歌 操作系统 阅读(362)评论(0) 选自Codelabs 机器之心编译 参 ...
- 基于深度学习和迁移学习的识花实践——利用 VGG16 的深度网络结构中的五轮卷积网络层和池化层,对每张图片得到一个 4096 维的特征向量,然后我们直接用这个特征向量替代原来的图片,再加若干层全连接的神经网络,对花朵数据集进行训练(属于模型迁移)
基于深度学习和迁移学习的识花实践(转) 深度学习是人工智能领域近年来最火热的话题之一,但是对于个人来说,以往想要玩转深度学习除了要具备高超的编程技巧,还需要有海量的数据和强劲的硬件.不过 Tens ...
- TensorFlow简易学习[3]:实现神经网络
TensorFlow本身是分布式机器学习框架,所以是基于深度学习的,前一篇TensorFlow简易学习[2]:实现线性回归对只一般算法的举例只是为说明TensorFlow的广泛性.本文将通过示例Ten ...
- 用tensorflow迁移学习猫狗分类
笔者这几天在跟着莫烦学习TensorFlow,正好到迁移学习(至于什么是迁移学习,看这篇),莫烦老师做的是预测猫和老虎尺寸大小的学习.作为一个有为的学生,笔者当然不能再预测猫啊狗啊的大小啦,正好之前正 ...
随机推荐
- [Codeforces 863C]1-2-3
Description Ilya is working for the company that constructs robots. Ilya writes programs for enterta ...
- [USACO 13NOV]No Change
Description Farmer John is at the market to purchase supplies for his farm. He has in his pocket K c ...
- SRM 558 SurroundingGame
题意: 给定一个网格,每个网格有选取代价和占据收益.每个点被占据,需要满足以下两个条件至少一个条件:1.被选取 2.邻近方格都被选取(有公共边被称为邻近) 不一定要占据所有方格,求最大收益. 输入 ...
- codefroces 612E Square Root of Permutation
A permutation of length n is an array containing each integer from 1 to n exactly once. For example, ...
- [HNOI2015]菜肴制作
题目描述 知名美食家小 A被邀请至ATM 大酒店,为其品评菜肴. ATM 酒店为小 A 准备了 N 道菜肴,酒店按照为菜肴预估的质量从高到低给予1到N的顺序编号,预估质量最高的菜肴编号为1. 由于菜肴 ...
- ●BZOJ 3996 [TJOI2015]线性代数
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3996 题解: 好题啊.(不太熟悉矩阵相关,所以按某些博主的模型转换来理解的)首先,那个式子可 ...
- [bzoj4755][Jsoi2016]扭动的回文串
来自FallDream的博客,未经允许,请勿转载,谢谢. JYY有两个长度均为N的字符串A和B. 一个“扭动字符串S(i,j,k)由A中的第i个字符到第j个字符组成的子串与B中的第j个字符到第k个字符 ...
- POJ2187Beauty Contest 旋转卡壳
题目链接 http://poj.org/problem?id=2187 先求凸包 再求凸多边形直径 旋转卡壳模板题 #include<cstdio> #include<cstring ...
- Delphi7 ADO面板上的控件简介
? ADO Connection的主要方法:1) Begin Trans 开始启动一个新的事务,必须保证数据连接处于激活状态.2) Cancel 关闭于数据库的连接.3) Commit T ...
- salesforce lightning零基础学习(二) lightning 知识简单介绍----lightning事件驱动模型
看此篇博客前或者后,看一下trailhead可以加深印象以及理解的更好:https://trailhead.salesforce.com/modules/lex_dev_lc_basics 做过cla ...