并查集(我根本不会切板子啊喂QWQ长文)(大雾
说句实话,我和并查集的缘分还是蛮深的,因为当年学完数论想着找板子题乱做(真是个神奇的找题方式呢),然后就看到了并查集QWQ,看了一会发现是图论就不看了,,,,,,结果还被说是大佬QWQ其实我只是个NaCl Fish而已QAQ
好了现在终于学了并查集,那我们就来总结总结
这一次总共是有三道题要讲
首先我们来看看板子题
P3367 【模板】并查集
并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中。这一类问题近几年来反复出现在信息学的国际国内赛题中,其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受;即使在空间上勉强通过,运行的时间复杂度也极高,根本就不可能在比赛规定的运行时间(1~3秒)内计算出试题需要的结果,只能用并查集来描述。 (摘自百度)
所谓并查集,其实就是并 查 集 这一点看题面就能理解了
这里看一下 并(把两个集合合并到一起)
void merge(int a, int b)
{
father[search(a)]=search(b);
}
这里看一下 查(查一个点的祖宗是啥)
int search(int a)
{
if (father[a] == a)
return a;
return father[a] = search(father[a]);
}
这里形象的理解一下(某谷题解)
关于并查集和路径压缩:
有a,b,c三个人
假设a和b打架了,a做了b的小弟。则令f[a]=b;
后来a打赢了c
那么c就是a的小弟了。所以,令f[c]=a;
但是,c不知道b,这不符合要求。
所以,我们必须让c的大哥变成最大的老大。
这个就是查的过程
int search(int a)
{
if (father[a] == a)
return a;
return father[a] = search(father[a]);
}
这里我用了一个比较好的优化技巧,就是在找一个点的祖宗的时候,一块把所有经过的点的祖宗都进行标记,这样就比较快了,看一下代码的话,也是赋了一个递归函数的返回值。这样的话找爹就更容易点了
代码贴一下
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
int n, m, x, y, z, father[], t1, t2;
int search(int a)
{
if (father[a] == a)
return a;
return father[a] = search(father[a]);
}
void merge(int a, int b)
{
father[search(a)]=search(b);
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = ; i <= n; ++i)
father[i] = i; for (int i = ; i <= m; ++i)
{
scanf("%d%d%d", &z, &x, &y);
if (z == )
merge(x, y);
else
{
if (search(x) == search(y))
printf("Y\n");
else
printf("N\n");
}
}
return ;
}
那么我们看下一个题
P1551 亲戚
这个题吧其实也算得上是一道并查集的板子题了,主要的就是分析一下要你干什么
我们来看看
,首先,我们假设每一个人都是一个独立的集合,在他输入两个人之间是亲戚关系的时候,我们就需要把这两个人所在的集合合并了,还是用到了上面的代码
这里边读入边合并,最后直接输出找爹结果就行了(还是挺水的)
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
int n, m, x, y, z, father[], p;
int search(int a)
{
if (father[a] == a)
return a;
return father[a] = search(father[a]);
}
void merge(int a, int b)
{
father[search(a)] = search(b);
}
int main()
{
scanf("%d%d%d", &n, &m, &p);
for (int i = ; i <= n; ++i)
father[i] = i;
for (int i = ; i <= m; ++i)
{
scanf("%d%d", &x, &y);
merge(x, y);
}
for (int i = ; i <= p; ++i)
{
scanf("%d%d", &x, &y);
if (search(x) == search(y))
printf("Yes\n");
else
printf("No\n");
}
return ;
}
最后一个题是这货
P3984 高兴的津津
这个题的标签是这样的

所以蒟蒻我一开始只是用数学方法做的啊QWQ
讲讲数学加模拟的实现吧
首先我们知道津津AKIOI之后会开心t天,但是在这t天以内,如果她再次AK,那么时间从头算起,这样的话,我们就可以比较每两个数的差,看是否大于t并且进行运算啦
贴代码,跑路~
#include <iostream>
#include <cstdio>
#include <algorithm>
using namespace std;
int n, t, a[], ans;
int main()
{
scanf("%d%d", &n, &t);
for (int i = ; i <= n; ++i)
{
scanf("%d", &a[i]);
if (i != )
{
if (a[i] - a[i - ] > t)
ans += t;
else
ans += a[i] - a[i - ];
}
}
ans += t;
printf("%d", ans);
return ;
}
并查集(我根本不会切板子啊喂QWQ长文)(大雾的更多相关文章
- CF # 296 C Glass Carving (并查集 或者 multiset)
C. Glass Carving time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...
- TZOJ 3042 切蛋糕(并查集)
描述 KK是个心灵手巧的好姑娘,她做了一个大蛋糕请她的好朋友们来品尝.这个蛋糕分成n×n个正方形小格,每个小格包含一块水果.KK要把蛋糕切成若干块,显然她不会破坏任意一个小格.无聊的某同学在她切蛋糕时 ...
- [poj-2985]The k-th Largest Group_Treap+并查集
The k-th Largest Group poj-2985 题目大意:给你n只猫,有两种操作:1.将两只猫所在的小组合并.2.查询小组数第k大的小组的猫数. 注释:1<=n,m<=20 ...
- hdu 5458 Stability(树链剖分+并查集)
Stability Time Limit: 3000/2000 MS (Java/Others) Memory Limit: 65535/102400 K (Java/Others)Total ...
- 洛谷P3295 萌萌哒 并查集 + ST表
又切一道紫题!!! 成功的(看了一吨题解之后),我A掉了第二道紫题. 好,我们仔细观察,发现这是一个排列组合问题. 有些限定条件,要相等的地方,我们就用并查集并起来.最后一查有多少个并查集,就有多少个 ...
- bzoj 3673&3674 可持久化并查集&加强版(可持久化线段树+启发式合并)
CCZ在2015年8月25日也就是初三暑假要结束的时候就已经能切这种题了%%% 学习了另一种启发式合并的方法,按秩合并,也就是按树的深度合并,实际上是和按树的大小一个道理,但是感觉(至少在这题上)更好 ...
- 【BZOJ4382】[POI2015]Podział naszyjnika 堆+并查集+树状数组
[BZOJ4382][POI2015]Podział naszyjnika Description 长度为n的一串项链,每颗珠子是k种颜色之一. 第i颗与第i-1,i+1颗珠子相邻,第n颗与第1颗也相 ...
- C. Glass Carving (CF Round #296 (Div. 2) STL--set的运用 && 并查集方法)
C. Glass Carving time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...
- [bzoj3910]火车_并查集_倍增LCA
火车 bzoj-3910 题目大意:给定一棵n个节点的树,你需要顺次经过m个互不相同的节点,如果一个节点在之前的路径上被经过过,它不必再被特意经过.问走过的路径长度. 注释:$1\le n\le 5\ ...
随机推荐
- .Net Linq与Lambda表达式中GroupBy以多个字段分组
一.引入 基本上熟悉C#语言的没有不知道Lambda表达式的,其对于数据的处理真的是太方便了.其中分组处理的GroupBy方法在List中的使用非常广泛.正式近期一个功能需求中又遇到了,而且是需要Gr ...
- 用jQuery做一个选项卡
1.首先我们点击选项卡的标题栏来改变内容
- Gerrit系统框架介绍
Gerrit目录介绍 转自:https://blog.csdn.net/tanshizhen119/article/details/79889242 先上图 bin/ : 主要是放gerrit.sh启 ...
- 《PHP制作个人博客》之四:分类添加及前端导航数据用php动态调取
大家好,今天我们接着上一节的全栈营销个人博客制作,上一节我们把博客的模板给加载运行起来.今天我们主要讲解后台模板分类的添加,后台导航的添加,及前台导航的动态调用.一个好的博客,导航很重要,导航就像你网 ...
- ARDC连接设备异常之ADB version mismatch的处理
如果ARDC提示ADB version mismatch,说明系统当前运行的adb server与client不匹配.此时如果在cmd.exe中运行adb devices命令则会出现类似如下的提示信息 ...
- 关于Android Studio 3.2 运行应用时提示 “Instant Run requires that the platform corresponding to your target device (Android 7.0 (Nougat)) is installed.” 的说明
点击"Run",运行App后,Android Studio显示如图1-1界面: 图1-1 这是因为你连接的外部设备(比如Android手机或AVD)的SDK版本在你的电脑上没有安装 ...
- 使用免费 mongodb数据库 + 免费node.js服务器搭建小程序接口
由于微信的小程序只支持不带端口的域名接口,不支持IP地址和接口,所以我们需要映射到80端口并绑定备案过的域名才能被微信小程序访问到.简单点就是接口需要 https 协议才行,找了许久的免费的数据库与n ...
- 基于FPM制作nginx RPM包
目录 环境 配置 FPM安装 环境 系统 其它 CentOS 7.5 需提前配置好epel 配置 [root@localhost ~]# yum clean all && yum ma ...
- 阿狸V任务页面爬取数据解析
需求: 爬取:https://v.taobao.com/v/content/video 所有主播详情页信息 首页分析 分析可以得知数据是通过ajax请求获取的. 分析请求头 详情页分析 详情页和详情页 ...
- 修饰符-static
一.static静态修饰符 static修饰符能够修饰属性,方法,初始代码块,不能修饰局部变量和类. 静态的变量叫常量,非静态的变量叫实例变量. 1.修饰属性 package gc.test.java ...