前面在介绍并查集时顺便提了Kruskal算法,既然已经说到了最小生成树问题,就没有道理不把Prime算法说了。

这里面先补充下Kruskal算法的大概意思,Kruskal算法通过把所有的边从小到大排列后,不断取权值最小的边加入最小生成树(起初可能是离散的多个树,最终连成一个整体),并通过并查集来舍弃形成回路的边。

Prime算法有所不同,Prime算法先将一个起点加入最小生成树,之后不断寻找与最小生成树相连的边权最小的边能通向的点,并将其加入最小生成树,是一种更符合人的主观直觉的最小生成树算法。

需要注意的是,Kruskal和Prime都仅适用于无向图。

#include <algorithm>
const int MAX_V = ;
const int INF = ;
int cost[MAX_V][MAX_V];//图
int V;
bool path[MAX_V][MAX_V];//记录结果
int res;
bool used[MAX_V];//表示是否访问过
int mincost[MAX_V];//表示到此点消耗值 void Prime()
{
res = ;//统计最小消耗
for (int i = ;i < V;++i)//初始化
{
used[i] = false;
mincost[i] = INF;
for (int j = ;j < V;++j)
{
path[i][j] = false;
}
}
mincost[] = ;//从0点开始
int prev = ;//记录路径
while (true)
{
int visited = -;
for (int i = ;i < V;++i)
{
if (!used[i] && (visited == - || mincost[i] < mincost[visited])) visited = i;//贪婪寻找最短边
}
if (visited == -) break;
used[visited] = true;
if (visited)
{
path[prev][visited] = true;
prev = visited;
}
res += mincost[visited];
for (int i = ;i < V;++i)
{
mincost[i] = std::min(mincost[i], cost[visited][i]);
}
}
}

下面给出一组Kruskal和Prime的测试数据及结果:

测试代码:

void mstTest()
{
cin >> V;
for (int i = ;i < V;++i)
for (int j = ;j < V;++j)
{
cin >> cost[i][j];
}
for (int i = ;i < V;++i) d[i] = INF;
cout << "Kruskal:" << endl;
Kruskal();
for (int i = ;i < V;++i)
{
for (int j = ;j < V;++j)
{
if (path[i][j]) cout << i << " " << j << endl;
}
}
cout << res << endl;
cout << endl;
cout << "Prime" << endl;
Prime();
for (int i = ;i < V;++i)
{
for (int j = ;j < V;++j)
{
if (path[i][j]) cout << i << " " << j << endl;
}
}
cout << res << endl;
}

测试结果:

9
1000000 1 5 7 4 1000000 1000000 1000000 1000000
1 1000000 1000000 1000000 1000000 3 10 1000000 1000000
5 1000000 1000000 1000000 1000000 2 1000000 2 1000000
7 1000000 1000000 1000000 1000000 1000000 1 1000000 1000000
4 1000000 1000000 1000000 1000000 1000000 1000000 3 1000000
1000000 3 2 1000000 1000000 1000000 1000000 1000000 2
1000000 10 1000000 1 1000000 1000000 1000000 1000000 9
1000000 1000000 2 1000000 3 1000000 1000000 1000000 5
1000000 1000000 1000000 1000000 1000000 2 9 5 1000000
Kruskal:
0 1
0 3
1 5
2 5
2 7
3 6
4 7
5 8
21

Prime
0 1
1 5
2 7
3 6
4 3
5 2
7 8
8 4
21
请按任意键继续. . .

可以看到,两种算法生成了拥有相同最小消耗的两颗完全不同的最小生成树。

Prime 算法的简述的更多相关文章

  1. 最小生成树---Kruskal/Prime算法

    1.Kruskal算法 图的存贮采用边集数组或邻接矩阵,权值相等的边在数组中排列次序可任意,边较多的不很实用,浪费时间,适合稀疏图.      方法:将图中边按其权值由小到大的次序顺序选取,若选边后不 ...

  2. 最小生成树之算法记录【prime算法+Kruskal算法】【模板】

    首先说一下什么是树: 1.只含一个根节点 2.任意两个节点之间只能有一条或者没有线相连 3.任意两个节点之间都可以通过别的节点间接相连 4.除了根节点没一个节点都只有唯一的一个父节点 5.也有可能是空 ...

  3. prime算法求最小生成树(畅通工程再续)

    连着做了四道畅通工程的题,其实都是一个套路,转化为可以求最小生成树的形式求最小生成树即可 这道题需要注意: 1:因为满足路的长度在10到1000之间才能建路,所以不满足条件的路径长度可以初始化为无穷 ...

  4. hdu 1233(还是畅通project)(prime算法,克鲁斯卡尔算法)(并查集,最小生成树)

    还是畅通project Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Tota ...

  5. 最小生成树(prime算法 & kruskal算法)和 最短路径算法(floyd算法 & dijkstra算法)

    一.主要内容: 介绍图论中两大经典问题:最小生成树问题以及最短路径问题,以及给出解决每个问题的两种不同算法. 其中最小生成树问题可参考以下题目: 题目1012:畅通工程 http://ac.jobdu ...

  6. 最小生成树两个经典算法(Prime算法、Kruskal算法) - biaobiao88

    经典的最小生成树例子,Prime算法,具体的步骤及其注释本人均在代码中附加,请仔细阅读与品味,要求,可以熟练的打出. //Prime算法基础 #include<iostream> usin ...

  7. 51 nod 1212 无向图最小生成树(Kruckal算法/Prime算法图解)

    1212 无向图最小生成树 N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树. 收起 输入 第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量.(2 <= N < ...

  8. Prime算法 与 Kruskal算法求最小生成树模板

    算法原理参考链接 ==> UESTC算法讲堂——最小生成树 关于两种算法的复杂度分析 ==> http://blog.csdn.net/haskei/article/details/531 ...

  9. poj 1258 Agri-Net【最小生成树(prime算法)】

    Agri-Net Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 44827   Accepted: 18351 Descri ...

随机推荐

  1. Java进阶(二十四)Java List集合add与set方法原理简介

    Java List集合add与set方法原理简介 add方法 add方法用于向集合列表中添加对象. 语法1 用于在列表的尾部插入指定元素.如果List集合对象由于调用add方法而发生更改,则返回 tr ...

  2. Maven nexus安装、配置和使用

    简介         Nexus 可以代理并缓存 Maven 构件,当 Maven 需要下载构件的时候,就不需要反复的请求中央仓库. 有些公司都不提供外网给项目组人员,因此就不能使用 Maven 访问 ...

  3. 【翻译】Ext JS——高效的编码风格指南

    原文:ExtJS - Efficient coding style guide 作者:Raja 切勿使用"new"关键字:在Ext JS中,使用"new"关键字 ...

  4. AngularJS进阶(二十三)ANGULAR三宗罪之版本陷阱

    ANGULAR三宗罪之版本陷阱 坑!碰到个大坑,前面由于绑定日期时将angular版本换为angular-1.3.0-beta.1时,后来午睡后,登录系统,发现无论如何都登陆不进去了,经过调试,发现数 ...

  5. Java-HttpSession

    //session给用户一种标志,让用户可以在不同页面以及网站中都有一个特殊的标记 public interface HttpSession { /** * Returns the time when ...

  6. Android驱动中的Kconfig文件与Makefile文件

    内核源码树的目录下都有两个文档Kconfig(2.4版本是Config.in)和Makefile.分布到各目录的Kconfig构成了一个分布式的内核配置数据库,每个Kconfig分别描述了所属目录源文 ...

  7. WINCE的批处理

    WINCE上没有提供象window一样的bat文件,如果需要类似功能可以借助第三方程序MortScript MortScript是一个运行于WINCE上的免费脚本解释程序,脚本文件为.mscr或.mo ...

  8. RedHat系列软件管理(第二版) --二进制软件包管理

    RedHat系列软件管理 --二进制软件包管理 Linux学习思想-Linux相对与Windows来非常透明,因此,无论是系统,还是软件,都会有本身自带,或者是Man给提供的非常详细的说明/帮助文档, ...

  9. OpenCV——颜色运算

    #ifndef PS_ALGORITHM_H_INCLUDED #define PS_ALGORITHM_H_INCLUDED #include <iostream> #include & ...

  10. 坚持自己的追求,迎来 “中国系统开发网” (CSDN)的专访

    坚持自己的追求,迎来 "中国系统开发网" (CSDN)的专访: 专访马根峰:海量数据处理与分析大师的中国本土程序员" http://www.csdn.net/articl ...