Description

题库链接

现在在二维平面内原点上有一只机器人,他每次可以选择向右走,向左走,向下走,向上走和不走(每次如果走只能走一格)。机器人不能走到横坐标是负数或者纵坐标是负数的点上。

给定操作次数 \(n\) ,求有多少种不同的操作序列使得机器人在操作后会回到原点,输出答案模 \(998244353\) 后的结果。

\(1\leq n\leq 100000\)

Solution

应该不难想吧...

显然我们先考虑前四种走法...不走的情况可以组合数求出来。

对于一类操作(向上向下或向左向右),显然是成组出现的。更具体地,这就是 \(Catalan\) 数。

记 \(Catalan\) 数的第 \(i\) 项为 \(C_i\) 。

记多项式

\[A(x)=\sum_{i=0}^\infty \frac{[2\mid i]\cdot C_{\left\lfloor\frac{i}{2}\right\rfloor}}{i!}x^i\]

那么答案就是 \(\sum_{i=0}^n [2\mid i]\cdot i!\cdot A^2(i)\cdot {n\choose i}\) 。 \(\text{NTT}\) 优化即可 。

Code

#include <bits/stdc++.h>
using namespace std;
const int N = 4*100000, yzh = 998244353; int n, inv[N+5], fac[N+5], ifac[N+5], a[N+5], len, R[N+5], L; int quick_pow(int a, int b) {
int ans = 1;
while (b) {
if (b&1) ans = 1ll*ans*a%yzh;
b >>= 1, a = 1ll*a*a%yzh;
}
return ans;
}
void NTT(int *A, int o) {
for (int i = 0; i < len; i++) if (i < R[i]) swap(A[i], A[R[i]]);
for (int i = 1; i < len; i <<= 1) {
int gn = quick_pow(3, (yzh-1)/(i<<1)), x, y;
if (o == -1) gn = quick_pow(gn, yzh-2);
for (int j = 0; j < len; j += (i<<1)) {
int g = 1;
for (int k = 0; k < i; k++, g = 1ll*g*gn%yzh) {
x = A[j+k], y = 1ll*g*A[j+k+i]%yzh;
A[j+k] = (x+y)%yzh, A[j+k+i] = (x-y)%yzh;
}
}
}
}
int C(int n, int m) {return 1ll*fac[n]*ifac[m]%yzh*ifac[n-m]%yzh; }
void work() {
scanf("%d", &n); inv[0] = inv[1] = fac[0] = ifac[0] = 1;
for (int i = 1; i <= n; i++) fac[i] = 1ll*i*fac[i-1]%yzh;
for (int i = 2; i <= n+1; i++) inv[i] = -1ll*yzh/i*inv[yzh%i]%yzh;
for (int i = 1; i <= n; i++) ifac[i] = 1ll*inv[i]*ifac[i-1]%yzh;
for (int i = 0; i <= n; i += 2) a[i] = 1ll*C(i, i/2)*inv[i/2+1]%yzh*ifac[i]%yzh;
for (len = 1; len <= (n<<1); len <<= 1) ++L;
for (int i = 0; i < len; i++) R[i] = (R[i>>1]>>1)|((i&1)<<(L-1));
NTT(a, 1);
for (int i = 0; i < len; i++) a[i] = 1ll*a[i]*a[i]%yzh;
NTT(a, -1);
for (int i = 0, inv = quick_pow(len, yzh-2); i < len; i++)
a[i] = 1ll*a[i]*inv%yzh*fac[i]%yzh;
int ans = 0;
for (int i = 0; i <= n; i += 2)
(ans += 1ll*a[i]*C(n, i)%yzh) %= yzh;
printf("%d\n", (ans+yzh)%yzh);
}
int main() {work(); return 0; }

[COGS 2287][HZOI 2015]疯狂的机器人的更多相关文章

  1. BZOJ 2287. [HZOI 2015]疯狂的机器人 [FFT 组合计数]

    2287. [HZOI 2015]疯狂的机器人 题意:从原点出发,走n次,每次上下左右不动,只能在第一象限,最后回到原点方案数 这不煞笔提,组合数写出来发现卷积NTT,然后没考虑第一象限gg 其实就是 ...

  2. 【COGS】2287:[HZOI 2015]疯狂的机器人 FFT+卡特兰数+排列组合

    [题意][COGS 2287][HZOI 2015]疯狂的机器人 [算法]FFT+卡特兰数+排列组合 [题解]先考虑一维的情况,支持+1和-1,前缀和不能为负数,就是卡特兰数的形式. 设C(n)表示第 ...

  3. [HZOI 2015]疯狂的机器人

    [题目描述] 现在在二维平面内原点上有一只机器人 他每次操作可以选择向右走,向左走,向下走,向上走和不走(每次如果走只能走一格) 但是由于本蒟蒻施展的大魔法,机器人不能走到横坐标是负数或者纵坐标是负数 ...

  4. COGS2287 [HZOI 2015]疯狂的机器人

    [题目描述] 现在在二维平面内原点上有一只机器人 他每次操作可以选择向右走,向左走,向下走,向上走和不走(每次如果走只能走一格) 但是由于本蒟蒻施展的大魔法,机器人不能走到横坐标是负数或者纵坐标是负数 ...

  5. COGS 2580. [HZOI 2015]偏序 II

    COGS 2580. [HZOI 2015]偏序 II 题目传送门 题目大意:给n个元素,每个元素有具有4个属性a,b,c,d,求i<j并且ai<aj,bi<bj,ci<cj, ...

  6. cogs 2123. [HZOI 2015] Glass Beads

    2123. [HZOI 2015] Glass Beads ★★★   输入文件:MinRepresentations.in   输出文件:MinRepresentations.out   简单对比时 ...

  7. cogs 2320. [HZOI 2015]聪聪的世界题解

    2320. [HZOI 2015]聪聪的世界 时间限制:6 s   内存限制:512 MB [题目描述] 背景: 聪聪的性取向有问题. 题目描述: 聪聪遇到了一个难题: 给出一个序列a1…an,完成以 ...

  8. COGS 2188. [HZOI 2015] Math 题解

      题目描述: 给定n个数X1-Xn,求下面式子的值(整数部分): n<=107,xi<=109且互不相同. 分析: 其实一开始看见这道题我也吓傻了,k这么大,再说我又是数论鶸渣,打死也不 ...

  9. [COGS 2258][HZOI 2015]复仇的序幕曲

    Description 你还梦不梦痛不痛,回忆这么重你怎么背得动 ----序言 当年的战火硝烟已经渐渐远去,可仇恨却在阿凯蒂王子的心中越来越深 他的叔父三年前谋权篡位,逼宫杀死了他的父王,用铁血手腕平 ...

随机推荐

  1. java并发包——阻塞队列BlockingQueue及源码分析

    一.摘要 BlockingQueue通常用于一个线程在生产对象,而另外一个线程在消费这些对象的场景,例如在线程池中,当运行的线程数目大于核心的线程数目时候,经常就会把新来的线程对象放到Blocking ...

  2. 网络1711-1712的C语言作业总结(2017-2018第一学期)

    1.第0次作业总结--预备作业 作业地址 1711班级总结 1712班级总结 2.第一次作业总结--顺序结构 作业地址 1711班级总结 1712班级总结 3.第二次作业总结--分支结构 作业地址 1 ...

  3. 实验三《Java面向对象程序设计》实验报告

    20162308 实验三<Java面向对象程序设计>实验报告 实验内容 XP基础 XP核心实践 IDEA工具学习 密码学算法基础 实验步骤 (一)Refactor/Reformat使用 p ...

  4. HDFS之HA机制

  5. nyoj 邮票分你一半

    邮票分你一半 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述      小珂最近收集了些邮票,他想把其中的一些给他的好朋友小明.每张邮票上都有分值,他们想把这些邮票分 ...

  6. Mysql数据库mys和ora库的备份与恢复脚本

    !/bin/bash Time=$(date +%Y%md%H%M%S) Back_dir="$HOME/mysqlback/${Time}" function Detect_u_ ...

  7. spring9——AOP之AspectJ对AOP的实现

    从上述的实验中可以看出BeanNameAutoProxyCreator对于AOP的实现已经和完美了,但是还有两点不足之处: 1,对于切面的实现比较麻烦,既不同类型的通知切面要实现不同的接口,而且一个切 ...

  8. SQL 中的日期和时间类型

    在我们SQL中一般支持三种数据类型. date:日历日期,包括年(四位),月和日. time: 一天中的时间,包括小时,分和秒.可以用变量time(p)来表示秒的小数点后的数字位数(默认是0). 通过 ...

  9. python/零起点(一、字符串)

    python/零起点(一.字符串) 字符串(str) 字符串是可迭代的 str()强制转成字符串类型 字符串是有序的,且不可变的数据类型. 字符串转换整型的案例: 1 name=['guobaoyua ...

  10. Django ORM创建数据库

    Python的WEB框架有Django.Tornado.Flask 等多种,Django相较与其他WEB框架其优势为:大而全,框架本身集成了ORM.模型绑定.模板引擎.缓存.Session等诸多功能. ...