Description

题库链接

现在在二维平面内原点上有一只机器人,他每次可以选择向右走,向左走,向下走,向上走和不走(每次如果走只能走一格)。机器人不能走到横坐标是负数或者纵坐标是负数的点上。

给定操作次数 \(n\) ,求有多少种不同的操作序列使得机器人在操作后会回到原点,输出答案模 \(998244353\) 后的结果。

\(1\leq n\leq 100000\)

Solution

应该不难想吧...

显然我们先考虑前四种走法...不走的情况可以组合数求出来。

对于一类操作(向上向下或向左向右),显然是成组出现的。更具体地,这就是 \(Catalan\) 数。

记 \(Catalan\) 数的第 \(i\) 项为 \(C_i\) 。

记多项式

\[A(x)=\sum_{i=0}^\infty \frac{[2\mid i]\cdot C_{\left\lfloor\frac{i}{2}\right\rfloor}}{i!}x^i\]

那么答案就是 \(\sum_{i=0}^n [2\mid i]\cdot i!\cdot A^2(i)\cdot {n\choose i}\) 。 \(\text{NTT}\) 优化即可 。

Code

#include <bits/stdc++.h>
using namespace std;
const int N = 4*100000, yzh = 998244353; int n, inv[N+5], fac[N+5], ifac[N+5], a[N+5], len, R[N+5], L; int quick_pow(int a, int b) {
int ans = 1;
while (b) {
if (b&1) ans = 1ll*ans*a%yzh;
b >>= 1, a = 1ll*a*a%yzh;
}
return ans;
}
void NTT(int *A, int o) {
for (int i = 0; i < len; i++) if (i < R[i]) swap(A[i], A[R[i]]);
for (int i = 1; i < len; i <<= 1) {
int gn = quick_pow(3, (yzh-1)/(i<<1)), x, y;
if (o == -1) gn = quick_pow(gn, yzh-2);
for (int j = 0; j < len; j += (i<<1)) {
int g = 1;
for (int k = 0; k < i; k++, g = 1ll*g*gn%yzh) {
x = A[j+k], y = 1ll*g*A[j+k+i]%yzh;
A[j+k] = (x+y)%yzh, A[j+k+i] = (x-y)%yzh;
}
}
}
}
int C(int n, int m) {return 1ll*fac[n]*ifac[m]%yzh*ifac[n-m]%yzh; }
void work() {
scanf("%d", &n); inv[0] = inv[1] = fac[0] = ifac[0] = 1;
for (int i = 1; i <= n; i++) fac[i] = 1ll*i*fac[i-1]%yzh;
for (int i = 2; i <= n+1; i++) inv[i] = -1ll*yzh/i*inv[yzh%i]%yzh;
for (int i = 1; i <= n; i++) ifac[i] = 1ll*inv[i]*ifac[i-1]%yzh;
for (int i = 0; i <= n; i += 2) a[i] = 1ll*C(i, i/2)*inv[i/2+1]%yzh*ifac[i]%yzh;
for (len = 1; len <= (n<<1); len <<= 1) ++L;
for (int i = 0; i < len; i++) R[i] = (R[i>>1]>>1)|((i&1)<<(L-1));
NTT(a, 1);
for (int i = 0; i < len; i++) a[i] = 1ll*a[i]*a[i]%yzh;
NTT(a, -1);
for (int i = 0, inv = quick_pow(len, yzh-2); i < len; i++)
a[i] = 1ll*a[i]*inv%yzh*fac[i]%yzh;
int ans = 0;
for (int i = 0; i <= n; i += 2)
(ans += 1ll*a[i]*C(n, i)%yzh) %= yzh;
printf("%d\n", (ans+yzh)%yzh);
}
int main() {work(); return 0; }

[COGS 2287][HZOI 2015]疯狂的机器人的更多相关文章

  1. BZOJ 2287. [HZOI 2015]疯狂的机器人 [FFT 组合计数]

    2287. [HZOI 2015]疯狂的机器人 题意:从原点出发,走n次,每次上下左右不动,只能在第一象限,最后回到原点方案数 这不煞笔提,组合数写出来发现卷积NTT,然后没考虑第一象限gg 其实就是 ...

  2. 【COGS】2287:[HZOI 2015]疯狂的机器人 FFT+卡特兰数+排列组合

    [题意][COGS 2287][HZOI 2015]疯狂的机器人 [算法]FFT+卡特兰数+排列组合 [题解]先考虑一维的情况,支持+1和-1,前缀和不能为负数,就是卡特兰数的形式. 设C(n)表示第 ...

  3. [HZOI 2015]疯狂的机器人

    [题目描述] 现在在二维平面内原点上有一只机器人 他每次操作可以选择向右走,向左走,向下走,向上走和不走(每次如果走只能走一格) 但是由于本蒟蒻施展的大魔法,机器人不能走到横坐标是负数或者纵坐标是负数 ...

  4. COGS2287 [HZOI 2015]疯狂的机器人

    [题目描述] 现在在二维平面内原点上有一只机器人 他每次操作可以选择向右走,向左走,向下走,向上走和不走(每次如果走只能走一格) 但是由于本蒟蒻施展的大魔法,机器人不能走到横坐标是负数或者纵坐标是负数 ...

  5. COGS 2580. [HZOI 2015]偏序 II

    COGS 2580. [HZOI 2015]偏序 II 题目传送门 题目大意:给n个元素,每个元素有具有4个属性a,b,c,d,求i<j并且ai<aj,bi<bj,ci<cj, ...

  6. cogs 2123. [HZOI 2015] Glass Beads

    2123. [HZOI 2015] Glass Beads ★★★   输入文件:MinRepresentations.in   输出文件:MinRepresentations.out   简单对比时 ...

  7. cogs 2320. [HZOI 2015]聪聪的世界题解

    2320. [HZOI 2015]聪聪的世界 时间限制:6 s   内存限制:512 MB [题目描述] 背景: 聪聪的性取向有问题. 题目描述: 聪聪遇到了一个难题: 给出一个序列a1…an,完成以 ...

  8. COGS 2188. [HZOI 2015] Math 题解

      题目描述: 给定n个数X1-Xn,求下面式子的值(整数部分): n<=107,xi<=109且互不相同. 分析: 其实一开始看见这道题我也吓傻了,k这么大,再说我又是数论鶸渣,打死也不 ...

  9. [COGS 2258][HZOI 2015]复仇的序幕曲

    Description 你还梦不梦痛不痛,回忆这么重你怎么背得动 ----序言 当年的战火硝烟已经渐渐远去,可仇恨却在阿凯蒂王子的心中越来越深 他的叔父三年前谋权篡位,逼宫杀死了他的父王,用铁血手腕平 ...

随机推荐

  1. (译文)学习ES6非常棒的特性——Async / Await函数

    try/catch 在使用Async/Await前,我们可能这样写: const main = (paramsA, paramsB, paramsC, done) => { funcA(para ...

  2. 结合jenkins在Linux服务器搭建测试环境

    何时使用: 测试过程中我们需要持续构建一个软件项目,为避免重复的手动下载.解压操作,我们需要搭建一个能够自动构建的测试环境,当代码有更新时,测试人员只需点一下[构建]即可拉取最新的代码进行测试(也可设 ...

  3. js日常积累

    1.数组转字符串 str.join(',') 2.字符串转数组 arr.split(',') 3.数组排序 function sorb(a,b){return a-b;}; arr.sort(sorb ...

  4. visualVM使用jstatd和jmx连接远程jvm及遇到的问题解决

    visualVM使用jstatd和jmx连接远程jvm及遇到的问题解决 JMX方式: 编辑Tomact里bin目录的catalina.sh . 在其头部加入 JAVA_OPTS=" -Dco ...

  5. 搭建java环境——使用Sublime Text 3(windows环境)

    实现sublime Text 3对Java编译执行 参考网址:http://tieba.baidu.com/p/2609515186 1.1直接在安装路径下找到*\Packages\Java.subl ...

  6. 【技巧】Java工程中的Debug信息分级输出接口

    也许本文的标题你们没咋看懂.但是,本文将带大家领略输出调试的威力. 灵感来源 说到灵感,其实是源于笔者在修复服务器的ssh故障时的一个发现. 这个学期初,同袍(容我来一波广告产品页面,同袍官网)原服务 ...

  7. rcnn fast-rcnn faster-rcnn资料

    ---恢复内容开始--- 框架:https://github.com/rbgirshick 论文:链接: https://pan.baidu.com/s/1jIoChxG 密码: ubgm faste ...

  8. Linux--慕课学习

    刚开始接触Linux,很有幸的在慕课网上看到了Peter老师的Linux入门课程,老师讲课真的式行云流水,深入浅出,循循善诱,层层递进. 老师分享的都是自己多年来总结的经验.看完之后也学到了很多东西. ...

  9. Spring Boot面试题

    Spring Boot 是微服务中最好的 Java 框架. 我们建议你能够成为一名 Spring Boot 的专家. 问题一 Spring Boot.Spring MVC 和 Spring 有什么区别 ...

  10. SSM中的登陆验证码

    @Autowired private Producer captchaProducer = null; /** * 后台登录验证码 * @param request * @param response ...