BZOJ4710: [Jsoi2011]分特产【组合数学+容斥】
Description
JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们。
JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任
何一个同学因为没有拿到特产而感到失落,所以每个同学都必须至少分得一个特产。
例如,JYY 带来了2 袋麻花和1 袋包子,分给A 和B 两位同学,那么共有4 种不同的
分配方法:
A:麻花,B:麻花、包子
A:麻花、麻花,B:包子
A:包子,B:麻花、麻花
A:麻花、包子,B:麻花
Input
输入数据第一行是同学的数量N 和特产的数量M。
第二行包含M 个整数,表示每一种特产的数量。
N, M 不超过1000,每一种特产的数量不超过1000
Output
输出一行,不同分配方案的总数。由于输出结果可能非常巨大,你只需要输出最终结果
MOD 1,000,000,007 的数值就可以了。
Sample Input
5 4
1 3 3 5
Sample Output
384835
思路
首先如果可以有人不拿到就很好做
那么就可以考虑容斥
用\(f_i\)表示有i个人分包裹并且每个人都拿到的方案数
然后简单容斥就可以了
#include<bits/stdc++.h>
using namespace std;
const int N = 2010;
const int Mod = 1e9 + 7;
int n, m, a[N], f[N];
int fac[N], inv[N];
int add(int a, int b) {
return (a += b) >= Mod ? a - Mod : a;
}
int sub(int a, int b) {
return (a -= b) < 0 ? a + Mod : a;
}
int mul(int a, int b) {
return 1ll * a * b % Mod;
}
int fast_pow(int a, int b) {
int res = 1;
while (b) {
if (b & 1) res = mul(res, a);
b >>= 1;
a = mul(a, a);
}
return res;
}
int C(int a, int b) {
return mul(fac[a], mul(inv[a - b], inv[b]));
}
int main() {
scanf("%d %d", &n, &m);
for (int i = 1; i <= m; i++) scanf("%d", &a[i]);
fac[0] = inv[0] = 1;
for (int i = 1; i < N; i++) fac[i] = mul(fac[i - 1], i);
inv[N - 1] = fast_pow(fac[N - 1], Mod - 2);
for (int i = N - 2; i >= 1; i--) inv[i] = mul(inv[i + 1], i + 1);
f[1] = 1;
for (int i = 2; i <= n; i++) {
int cur = 1;
for (int j = 1; j <= m; j++) {
cur = mul(cur, C(i + a[j] - 1, i - 1));
}
for (int j = 1; j < i; j++) {
cur = sub(cur, mul(C(i, j), f[j]));
}
f[i] = cur;
}
printf("%d", f[n]);
return 0;
}
BZOJ4710: [Jsoi2011]分特产【组合数学+容斥】的更多相关文章
- bzoj4710: [Jsoi2011]分特产 组合+容斥
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 289 Solved: 198[Submit][Status] ...
- bzoj4710 [Jsoi2011]分特产(容斥)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 814 Solved: 527[Submit][Status] ...
- 【BZOJ4710】[JSOI2011]分特产(容斥)
[BZOJ4710]分特产(容斥) 题面 BZOJ 题解 比较简单吧... 设\(f[i]\)表示至多有\(i\)个人拿到东西的方案数. \(f[i]=\prod_{j=1}^m C_{m+i-1}^ ...
- 【BZOJ4710】[Jsoi2011]分特产 组合数+容斥
[BZOJ4710][Jsoi2011]分特产 Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同 ...
- luogu 5505 [JSOI2011]分特产 广义容斥
共有 $m$ 种物品,每个物品 $a[i]$ 个,分给 $n$ 个人,每个人至少要拿到一件,求方案数. 令 $f[i]$ 表示钦定 $i$ 个没分到特产,其余 $(n-i)$ 个人随便选的方案数,$g ...
- BZOJ4710: [Jsoi2011]分特产 组合数学 容斥原理
题意:把M堆特产分给N个同学,要求每个同学至少分到一种特产,共有多少种分法? 把A个球分给B个人的分法种数:(插板法,假设A个球互不相同,依次插入,然后除以全排列去重) C(A,B+A) 把M堆特产分 ...
- [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 395 Solved: 262[Submit][Status] ...
- BZOJ4710 [Jsoi2011]分特产 容斥
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4710 题解 本来想去找一个二项式反演的题的,结果被 https://www.cnblogs.c ...
- BZOJ4710 JSOI2011分特产(容斥原理+组合数学)
显然可以容斥去掉每人都不为空的限制.每种物品分配方式独立,各自算一个可重组合乘起来即可. #include<iostream> #include<cstdio> #includ ...
随机推荐
- JavaScript权威指南--脚本化文档
知识要点 脚本化web页面内容是javascript的核心目标. 第13章和14章解释了每一个web浏览器窗口.标签也和框架由一个window对象所示.每个window对象有一个document对象, ...
- C# 中的浅表副本与深表副本
public class Student { public int age; public Student(int age) { this.age = age; } } public class Gr ...
- MongoDB分片集群环境搭建记录
--创建配置服务器mongod.exe --logpath "G:\USERDATA\MONGODB\Test2\Log\mongodb.log" --logappend --db ...
- C++STL3--queue
C++STL3--queue 一.心得 STL的这些东西用法都差不多 二.介绍 queue数据结构中的队列 priority_queue优先队列,插入进去的元素都会从大到小排好序 PS:在priori ...
- jsp/post中文乱码问题
在 iso-8859-1,gb2312, utf-8 以及任意一种编码格式下,英文编码格式都是一样的,每个字符占8位,而中文就麻烦了,在gb2312 下一个中文占 16位,两字节,而在utf-8 下一 ...
- Spring Boot 介绍
Spring Boot 能够让你更加容易创建一个独立启动,产品化的,并且是基于 Spring 的应用程序.我们为 Spring 平台及第三方库提供开箱即用的设置,这样你就可以有条不紊的开始开发,减少在 ...
- 『科学计算』可视化二元正态分布&3D科学可视化实战
二元正态分布可视化本体 由于近来一直再看kaggle的入门书(sklearn入门手册的感觉233),感觉对机器学习的理解加深了不少(实际上就只是调包能力加强了),联想到假期在python科学计算上也算 ...
- 浅谈Linux
Linux系统最初由芬兰赫尔辛基大学的Andrew S.Tanenbaum写的MINIX操作系统演变而来,这是一个小型操作系统,主要用于教学,1991年1月,Tanenbaum的学生Linus Tor ...
- OC Foundation框架—字符串
一.Foundation框架中一些常用的类 字符串型: NSString:不可变字符串 NSMutableString:可变字符串 集合型: 1) NSArray:OC不可变数组 NSMutableA ...
- sublime 个人心得
sublime 3快捷键: (1) Ctrl+O(Command+O)可以实现头文件和源文件之间的快速切换 (2) 双击可选中光标所在单词,三击可选中光标所在行(等同于Ctrl+L(Command+L ...