BZOJ4710: [Jsoi2011]分特产【组合数学+容斥】
Description
JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们。
JYY 想知道,把这些特产分给N 个同学,一共有多少种不同的分法?当然,JYY 不希望任
何一个同学因为没有拿到特产而感到失落,所以每个同学都必须至少分得一个特产。
例如,JYY 带来了2 袋麻花和1 袋包子,分给A 和B 两位同学,那么共有4 种不同的
分配方法:
A:麻花,B:麻花、包子
A:麻花、麻花,B:包子
A:包子,B:麻花、麻花
A:麻花、包子,B:麻花
Input
输入数据第一行是同学的数量N 和特产的数量M。
第二行包含M 个整数,表示每一种特产的数量。
N, M 不超过1000,每一种特产的数量不超过1000
Output
输出一行,不同分配方案的总数。由于输出结果可能非常巨大,你只需要输出最终结果
MOD 1,000,000,007 的数值就可以了。
Sample Input
5 4
1 3 3 5
Sample Output
384835
思路
首先如果可以有人不拿到就很好做
那么就可以考虑容斥
用\(f_i\)表示有i个人分包裹并且每个人都拿到的方案数
然后简单容斥就可以了
#include<bits/stdc++.h>
using namespace std;
const int N = 2010;
const int Mod = 1e9 + 7;
int n, m, a[N], f[N];
int fac[N], inv[N];
int add(int a, int b) {
return (a += b) >= Mod ? a - Mod : a;
}
int sub(int a, int b) {
return (a -= b) < 0 ? a + Mod : a;
}
int mul(int a, int b) {
return 1ll * a * b % Mod;
}
int fast_pow(int a, int b) {
int res = 1;
while (b) {
if (b & 1) res = mul(res, a);
b >>= 1;
a = mul(a, a);
}
return res;
}
int C(int a, int b) {
return mul(fac[a], mul(inv[a - b], inv[b]));
}
int main() {
scanf("%d %d", &n, &m);
for (int i = 1; i <= m; i++) scanf("%d", &a[i]);
fac[0] = inv[0] = 1;
for (int i = 1; i < N; i++) fac[i] = mul(fac[i - 1], i);
inv[N - 1] = fast_pow(fac[N - 1], Mod - 2);
for (int i = N - 2; i >= 1; i--) inv[i] = mul(inv[i + 1], i + 1);
f[1] = 1;
for (int i = 2; i <= n; i++) {
int cur = 1;
for (int j = 1; j <= m; j++) {
cur = mul(cur, C(i + a[j] - 1, i - 1));
}
for (int j = 1; j < i; j++) {
cur = sub(cur, mul(C(i, j), f[j]));
}
f[i] = cur;
}
printf("%d", f[n]);
return 0;
}
BZOJ4710: [Jsoi2011]分特产【组合数学+容斥】的更多相关文章
- bzoj4710: [Jsoi2011]分特产 组合+容斥
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 289 Solved: 198[Submit][Status] ...
- bzoj4710 [Jsoi2011]分特产(容斥)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 814 Solved: 527[Submit][Status] ...
- 【BZOJ4710】[JSOI2011]分特产(容斥)
[BZOJ4710]分特产(容斥) 题面 BZOJ 题解 比较简单吧... 设\(f[i]\)表示至多有\(i\)个人拿到东西的方案数. \(f[i]=\prod_{j=1}^m C_{m+i-1}^ ...
- 【BZOJ4710】[Jsoi2011]分特产 组合数+容斥
[BZOJ4710][Jsoi2011]分特产 Description JYY 带队参加了若干场ACM/ICPC 比赛,带回了许多土特产,要分给实验室的同学们. JYY 想知道,把这些特产分给N 个同 ...
- luogu 5505 [JSOI2011]分特产 广义容斥
共有 $m$ 种物品,每个物品 $a[i]$ 个,分给 $n$ 个人,每个人至少要拿到一件,求方案数. 令 $f[i]$ 表示钦定 $i$ 个没分到特产,其余 $(n-i)$ 个人随便选的方案数,$g ...
- BZOJ4710: [Jsoi2011]分特产 组合数学 容斥原理
题意:把M堆特产分给N个同学,要求每个同学至少分到一种特产,共有多少种分法? 把A个球分给B个人的分法种数:(插板法,假设A个球互不相同,依次插入,然后除以全排列去重) C(A,B+A) 把M堆特产分 ...
- [BZOJ4710][JSOI2011]分特产(组合数+容斥原理)
4710: [Jsoi2011]分特产 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 395 Solved: 262[Submit][Status] ...
- BZOJ4710 [Jsoi2011]分特产 容斥
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4710 题解 本来想去找一个二项式反演的题的,结果被 https://www.cnblogs.c ...
- BZOJ4710 JSOI2011分特产(容斥原理+组合数学)
显然可以容斥去掉每人都不为空的限制.每种物品分配方式独立,各自算一个可重组合乘起来即可. #include<iostream> #include<cstdio> #includ ...
随机推荐
- 【Golang】幽灵变量(变量覆盖)问题的一劳永逸解决方法
背景 在我们公司,测试定位问题的能力在考核中占了一定的比例,所以我们定位问题的主动性会比较高.因为很多开发同学都是刚开始使用golang,所以bug频出,其中又以短变量声明语法导致的错误最多.所以就专 ...
- Codeforces 839B - Game of the Rows
839B - Game of the Rows 思路:先放4个的,然后再放2个的,最后再放1个的. 代码: #include<bits/stdc++.h> using namespace ...
- 关于angular5的惰性加载报错问题
之前为了测试一个模块优化问题,于是用angular-cli快速搭建了个ng5的脚手架demo,在应用惰性加载功能的时候发现浏览器报错如下: ERROR Error: Uncaught (in prom ...
- php--------删除数组的第一个元素和最后一个元素
对于一个php数组,该如何删除该数组的第一个元素或者最后一个元素呢?其实这两个过程都可以通过php自带的函数 array_pop 和 array_shift 来完成,下面就具体介绍一下如何来操作. ( ...
- Java 的对象和类
Java 是一种面向对象的语言.作为一个面向的语言,Java 具有面向对象的特性,Java 能够支持下面的一些基本概念 − 多态(Polymorphism) 继承(Inheritance) 封装(En ...
- 『科学计算』科学绘图库matplotlib练习
思想:万物皆对象 作业 第一题: import numpy as np import matplotlib.pyplot as plt x = [1, 2, 3, 1] y = [1, 3, 0, 1 ...
- HDU-3480 Division (四边形不等式优化DP)
题目大意:将n个数分成m组,将每组的最大值与最小值的平方差加起来,求最小和. 题目分析:先对数排序.定义状态dp(i,j)表示前 j 个数分成 i 组得到的最小和,则状态转移方程为dp(i,j)=mi ...
- DIV字体
1.如何设定文字字体.颜色.大小 —— 使用font font-style设定斜体,比如font-style: italicfont-weight设定文字粗细,比如font-weight: bold; ...
- OC id类型
id数据类型可存储任何类型的对象.从某种意义说,它是一般对象类型. -------------------------"NormalMan.h"------------------ ...
- python运维01-获取系统基础信息
1.获取系统主机名,IP,MAC地址 import socket import uuid macs = uuid.UUID(int = uuid.getnode()).hex[-12:] mac = ...