论文地址:https://arxiv.org/abs/1602.07360
模型地址:https://github.com/DeepScale/SqueezeNet

1. 论文思想

提出一种新的卷积组合方式替代原来的3*3的卷积。类似于bottleneck layer减少参数数目。但是不太像MobileNet是提出了一种新的卷积计算方式来减少参数,加速计算。

2. 网络结构设计策略

  1. 用3*3的替代1*1的filter。 (NiN, GoogLeNet)
  2. 减少3*3的输入channel数目。 (bottleneck layer)
  3. 延迟下采样(so that convolution layers have large activation maps. (He & Sun)

3. 组合方式

  1. squeeze中的1*1的卷积为了减少输入到3*3中的channel数目

  2. expand中的1*1和3*3的卷积,也算是一种效果的综合吧。(不能全是3*3的,不然论文就没有什么创新了。不能全是1*1的卷积,估计会影响效果。)

4. 网络结构

  1. SqueezeNet
  2. SqueezeNet with simple bypass(类似于ResNet,因为要做加操作,要求两个输入的channel num一样,所以只能在某些层加bypass)
  3. SqueezeNet with complex bypass(添加1*1的卷积,打破上面那个限制)

  1. compression info 应用的是Deep compression里面的稀疏性和量化的方法。

5. 组合方式探索

  1. 探索了几个超参数不同组合方式对网络大小以及准确率的影响。

  2. 结果

6. 总结

  1. 在AlexNet上实现了50x的缩减,模型大小小于0.5MB。
  2. 探索较深网络的时候,可以尝试这种方法。
  3. 又是一篇在1*1的卷积上做工作的文章。(MobileNet, ShuffleNet)

论文笔记——SQUEEZENET ALEXNET-LEVEL ACCURACY WITH 50X FEWER PARAMETERS AND <0.5MB MODEL SIZE的更多相关文章

  1. SQUEEZENET: ALEXNET-LEVEL ACCURACY WITH 50X FEWER PARAMETERS AND <0.5MB MODEL SIZE

    论文阅读笔记 转载请注明出处: http://www.cnblogs.com/sysuzyq/p/6186518.html By 少侠阿朱

  2. SqueezeNet:AlexNet-level Accuracy with 50x fewer parameters and less than 0.5Mb model size

    - Fire modules consisting of a 'squeeze' layer with 1*1 filters feeding an 'expand' layer with 1*1 a ...

  3. 论文笔记:CNN经典结构1(AlexNet,ZFNet,OverFeat,VGG,GoogleNet,ResNet)

    前言 本文主要介绍2012-2015年的一些经典CNN结构,从AlexNet,ZFNet,OverFeat到VGG,GoogleNetv1-v4,ResNetv1-v2. 在论文笔记:CNN经典结构2 ...

  4. 论文笔记系列-Auto-DeepLab:Hierarchical Neural Architecture Search for Semantic Image Segmentation

    Pytorch实现代码:https://github.com/MenghaoGuo/AutoDeeplab 创新点 cell-level and network-level search 以往的NAS ...

  5. Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现(转)

    Deep Learning论文笔记之(四)CNN卷积神经网络推导和实现 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些论文, ...

  6. 论文笔记之:Visual Tracking with Fully Convolutional Networks

    论文笔记之:Visual Tracking with Fully Convolutional Networks ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做 ...

  7. Deep Learning论文笔记之(八)Deep Learning最新综述

    Deep Learning论文笔记之(八)Deep Learning最新综述 zouxy09@qq.com http://blog.csdn.net/zouxy09 自己平时看了一些论文,但老感觉看完 ...

  8. Twitter 新一代流处理利器——Heron 论文笔记之Heron架构

    Twitter 新一代流处理利器--Heron 论文笔记之Heron架构 标签(空格分隔): Streaming-process realtime-process Heron Architecture ...

  9. Deep Learning论文笔记之(六)Multi-Stage多级架构分析

    Deep Learning论文笔记之(六)Multi-Stage多级架构分析 zouxy09@qq.com http://blog.csdn.net/zouxy09          自己平时看了一些 ...

随机推荐

  1. innodb next-key lock引发的死锁

    innodb的事务隔离级别是可重复读级别且innodb_locks_unsafe_for_binlog禁用,也就是说允许next-key lock CREATE TABLE `LockTest` (  ...

  2. vscode主题配色

    https://www.cnblogs.com/garvenc/p/vscode_customize_color_theme.html

  3. HDU 1068 Girls And Boys 二分图题解

    版权声明:本文作者靖心.靖空间地址:http://blog.csdn.net/kenden23/,未经本作者同意不得转载. https://blog.csdn.net/kenden23/article ...

  4. Oracle Golden Gate原理简介

    Oracle Golden Gate原理简介 http://www.askoracle.org/oracle/HighAvailability/20140109953.html#6545406-tsi ...

  5. Python3学习之路~2.5 简单的三级菜单程序

    程序:三级菜单 需求: 1.打印省.市.县三级菜单2.可返回上一级3.可随时退出程序 代码1: data={ "山东":{ "济南":["历下区&qu ...

  6. qsv转mp4

    1:下载格式工厂:http://rj.baidu.com/soft/detail/13052.html?ald 2:安装 :选择安装位置,把不需要安装的软件前面的对号去掉. 3:下一步,把不需要的软件 ...

  7. MongoDB3.x中添加用户和权限控制

    现在需要创建一个帐号,该账号需要有grant权限,即:账号管理的授权权限.注意一点,帐号是跟着库走的,所以在指定库里授权,必须也在指定库里验证(auth) ? 1 2 3 4 5 6 7 8 9 10 ...

  8. numpy 中clip函数的使用

    其中a是一个数组,后面两个参数分别表示最小和最大值 也就是说clip这个函数将将数组中的元素限制在a_min, a_max之间,大于a_max的就使得它等于 a_max,小于a_min,的就使得它等于 ...

  9. 一个新人对于DW标签的理解

    标签呢分为 一.一般标签 一般标签内又分为 ① 格式控制标签 格式控制标签的书写格式是: <font .....></font>  以font为开头以/font为结尾 font ...

  10. javascript中的console.log有什么作用?

    javascript中的console.log有什么作用? 主要是方便你调式javascript用的.你可以看到你在页面中输出的内容. 相比alert他的优点是:他能看到结构话的东西,如果是alert ...