一、OpenCV接口调用示意

介绍了OpenCV3中提取图像角点特征的函数:

 # coding=utf-
import cv2
import numpy as np '''Harris算法角点特征提取''' img = cv2.imread('chess_board.png')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
gray = np.float32(gray) # {标记点大小,敏感度(~,越小越敏感)}
# OpenCV函数cv2.cornerHarris() 有四个参数 其作用分别为 :
#img - Input image, it should be grayscale and float32 type.
#blockSize - It is the size of neighbourhood considered for corner detection
#ksize - Aperture parameter of Sobel derivative used.
#k - Harris detector free parameter in the equation,在0. 到0.05之间
dst = cv2.cornerHarris(gray,,,0.04)
img[dst>0.01 * dst.max()] = [,,] cv2.imshow('corners',img)
cv2.waitKey()
cv2.destroyAllWindows()

dst = cv2.cornerHarris(gray,2,23,0.04)中第3个参数(23)调整对结果影响如下:

取值为3时:

取值为23时:

二、使用Python实现harris胶垫检测

计算机视觉课后作业,因为已经提交了一段时间了,之前也注意到网上很少有python版本的harris角点检测代码,所以开源出来,

# Author : hellcat
# Time : 18-3-22 """
import os
os.environ["CUDA_VISIBLE_DEVICES"]="-1" import numpy as np
np.set_printoptions(threshold=np.inf) import tensorflow as tf
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.Session(config=config)
""" import numpy as np
from PIL import Image
from skimage import filters
from datetime import datetime
import matplotlib.pyplot as plt IMAGE_PATH = '1653033843.jpg' # 图片路径
WITH_NMS = False # 是否非极大值抑制,True/False
k = 0.04 # 响应函数参数k
threshold = 0.01 # 界定阈值 img = Image.open(IMAGE_PATH)
img_gray = img.convert('L')
img_num = np.pad(np.asarray(img_gray, dtype=np.float32), ((1, 1), (1, 1)), 'constant')
h, w = img_num.shape # padding之后的图像尺寸 # 计算Ix,Iy
grad = np.empty([h, w, 2], dtype=np.float)
grad[:, 1:-1, 0] = img_num[:, 2:] - img_num[:, :-2] # Ix
grad[1:-1, :, 1] = img_num[2:, :] - img_num[:-2, :] # Iy # 计算Ixx,Iyy,Ixy
m = np.empty([h, w, 3], dtype=np.float)
# m[:, :, 0] = grad[:, :, 0]**2
# m[:, :, 1] = grad[:, :, 0]**2
# m[:, :, 2] = grad[:, :, 0]*grad[:, :, 1]
m[:, :, 0] = filters.gaussian(grad[:, :, 0]**2, sigma=2) # Ixx
m[:, :, 1] = filters.gaussian(grad[:, :, 1]**2, sigma=2) # Iyy
m[:, :, 2] = filters.gaussian(grad[:, :, 0]*grad[:, :, 1], sigma=2) # Ixy
m = [np.array([[m[i, j, 0], m[i, j, 2]],
[m[i, j, 2], m[i, j, 1]]]) for i in range(h) for j in range(w)] # 记录一下R计算时耗
start = datetime.now()
# 0:00:42.123384 迭代器策略:用时间换空间
# R = np.array([d-k*t**2 for d, t in zip(map(np.linalg.det, m), map(np.trace, m))])
# 0:00:35.846864
D, T = list(map(np.linalg.det, m)), list(map(np.trace, m))
R = np.array([d-k*t**2 for d, t in zip(D, T)])
end = datetime.now()
print(end-start) R_max = np.max(R)
R = R.reshape(h, w) # 标注角点
record = np.zeros_like(R, dtype=np.int)
img_row = np.pad(np.asarray(img, dtype=np.float32), ((1, 1), (1, 1), (0, 0)), 'constant')
for i in range(1, h-2):
for j in range(1, w-2):
if WITH_NMS:
if R[i, j] > R_max*threshold and R[i, j] == np.max(R[i-1:i+2, j-1:j+2]):
record[i, j] = 255
img_row[i, j] = [255, 255, 255]
else:
if R[i, j] > R_max*0.01:
record[i, j] = 255
img_row[i, j] = [255, 255, 255]
# record[R > 0.01*R_max] = 255
# img_row[R > 0.01*R_max] = [255, 255, 255] # 图像展示与保存
res = Image.fromarray(np.uint8(record[1:-1, 1:-1]))
img_row = Image.fromarray(np.uint8(img_row[1:-1, 1:-1])) plt.figure()
plt.subplot(1, 2, 1)
plt.imshow(res)
plt.subplot(1, 2, 2)
plt.imshow(img_row)
if WITH_NMS:
plt.savefig('角点检测_NMS.jpg')
res.save('角点检测_NMS_1.png')
img_row.save('角点检测_NMS_2.png')
else:
plt.savefig('角点检测_no_NMS.jpg')
res.save('角点检测_no_NMS_1.png')
img_row.save('角点检测_no_NMS_2.png')

实际上在计算Ixx,Ixy,Iyy时要进行高斯滤波,理论推导中都采用了最简单的权重(全部为1),这点注意,使用全1权重啥也检测不出来。

不进行非极大值抑制结果:

进行非极大值抑制结果(实际上检测出来的点很多,因为分辨率看不清):

『OpenCV3』Harris角点特征_API调用及python手动实现的更多相关文章

  1. 『OpenCV3』霍夫变换原理及实现

    霍夫变换常用于检测直线特征,经扩展后的霍夫变换也可以检测其他简单的图像结构. 在霍夫变换中我们常用公式 ρ = x*cosθ + y*sinθ 表示直线,其中ρ是圆的半径(也可以理解为原点到直线的距离 ...

  2. 『OpenCV3』滤波器边缘检测

    一.原理简介 边缘检测原理 - Sobel, Laplace, Canny算子 X方向Sobel算子 -1 -2 -1 0 0 0 1 2 1 Y方向Sobel算子 -1 0 1 -2 0 2 -1 ...

  3. 『OpenCV3』滤波器实现及使用滤波器降噪

    一.滤波器实现 我们实现这样一个基于拉普拉斯算子的滤波器核心,并使用它进行滤波,这可以做到锐化图像的效果, 0 -1 0 -1 5 -1 0 -1 0 首先我们完全手动的进行滤波,依赖指针操作, vo ...

  4. 『OpenCV3』基于色彩分割图片

    一.遍历图像实现色彩掩码 本节我们实现这样一个算法,我们指定某种颜色和一个阈值,根据输入图片生成一张掩码,标记符合的像素(和指定颜色的差异在阈值容忍内). 源代码如下,我们使用一个class完成这个目 ...

  5. 『OpenCV3』Mat简介

    Mat属性方法介绍:OpenCV2:Mat属性type,depth,step 推荐一套OpenCV入门博客:OpenCV探索 一.Mat Mat类用于表示一个多维的单通道或者多通道的稠密数组.能够用来 ...

  6. 『OpenCV3』处理视频&摄像头

    在opencv中,摄像头和视频文件并没有很大不同,都是一个可以read的数据源,使用cv2.VideoCapture(path).read()可以获取(flag,当前帧),对于每一帧,使用图片处理函数 ...

  7. 『OpenCV3』简单图片处理

    cv2和numpy深度契合,其图片读入后就是numpy.array,只不过dtype比较不常用而已,支持全部数组方法 数组既图片 import numpy as np import cv2 img = ...

  8. 『片段』ShellHelper 控制台程序 的 程序调用(支持输入命令得到返回字符串输出)

    背景: > 之前做 OGG 时,被 OGG的配置 恶心到了.(OGG是啥,这里就不解释了) > 总之就是一个 控制台程序,总是得手动执行一堆命令,每次都得输入 —— 实在是打字打累了. & ...

  9. 第十一节、Harris角点检测原理(附源码)

    OpenCV可以检测图像的主要特征,然后提取这些特征.使其成为图像描述符,这类似于人的眼睛和大脑.这些图像特征可作为图像搜索的数据库.此外,人们可以利用这些关键点将图像拼接起来,组成一个更大的图像,比 ...

随机推荐

  1. MATERIALIZED VIEW-物化视图

     Oracle的实体化视图提供了强大的功能,可以用在不同的环境中,实体化视图和表一样可以直接进行查询.实体化视图可以基于分区表,实体化视图本身也可以分区. 主要用于预先计算并保存表连接或聚集等耗时较多 ...

  2. MongoDB ----基于分布式文件存储的数据库

    参考: http://www.cnblogs.com/huangxincheng/category/355399.html http://www.cnblogs.com/daizhj/category ...

  3. selenium自动化定位方法

    用selenium操作浏览器进行自动化操作其实就是通过元素属性执行相关操作.所以,我们要知道怎样去查找元素,定位元素. 常见的定位属性有: #查找元素的id find_elements_by_id(i ...

  4. MySQL备份与恢复-innobackupex

    :上一片myloder搞崩溃,为什么百度的博文都是抄袭一模一样的,哎烦! 这一片文章我们来介绍物理备份工具xtracebackup! 首先是安装可以percona官网下载安装,下载rpm包直接yum安 ...

  5. JS(JavaScript)脚本库的积累

    在现在互联网盛行的时代,使得B/S架构飞速发展.曾经在大学的时候我一直都梦想着毕业后要找一个像腾讯这样大企业做C/S方面的开发工作(其实现在腾讯也有很多B/S软件),因为C/S体验度非常高,感觉非常好 ...

  6. Python3基础 if嵌套示例

             Python : 3.7.0          OS : Ubuntu 18.04.1 LTS         IDE : PyCharm 2018.2.4       Conda ...

  7. Python3基础 time.localtime 当前系统的年月日 时分秒

             Python : 3.7.0          OS : Ubuntu 18.04.1 LTS         IDE : PyCharm 2018.2.4       Conda ...

  8. Git基础 —— Github 的使用

    Git 基础学习系列 Git 基础 -- 安装 配置 别名 对象 Git 基础 -- 常用命令 Git 基础 -- 常见使用场景 Git基础 -- Github 的使用 Github 的利用 Gith ...

  9. linux下有线网卡出现ADDRCONF(NETDEV_UP): eth0: link is not ready的解决方法

    一.背景 2018年5月24日,笔者的pc已经连续运转两天了,突然要使用有线网卡,却发现有线网卡无法正常工作,于是查看了一下内核日志: r8169 0000:05:00.0 eth0: link do ...

  10. HDU 2157(矩阵快速幂)题解

    How many ways?? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...