1.8TF的分类
TF识别手写体识别分类
#-*- coding: utf-8 -*-
# @Time : 2017/12/26 15:42
# @Author : Z
# @Email : S
# @File : 1.9classification.py
#该程序在windows上报错,linux上没问题
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#网上下载数据包,也可以下载好指定
#http://yann.lecun.com/exdb/mnist/
mnist = input_data.read_data_sets('D:\\BigData\\Data\\MNIST_data', one_hot=True) print(mnist.train.num_examples)
#
def add_layer(inputs,in_size,out_size,activation_function=None):
#定义权重--随机生成inside和outsize的矩阵
Weights=tf.Variable(tf.random_normal([in_size,out_size]))
#不是矩阵,而是类似列表
biaes=tf.Variable(tf.zeros([1,out_size])+0.1)
Wx_plus_b=tf.matmul(inputs,Weights)+biaes
if activation_function is None:
outputs=Wx_plus_b
else:
outputs=activation_function(Wx_plus_b)
return outputs
def compute_accuracy(v_xs,v_ys):
global prediction
y_pre=sess.run(prediction,feed_dict={xs:v_xs})
correct_prediction=tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))
accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
result=sess.run(accuracy,feed_dict={xs:v_xs,ys:v_ys})
return result
#添加placeholder对于输入网络层
xs=tf.placeholder(tf.float32,[None,784]) #28*28
ys=tf.placeholder(tf.float32,[None,10])
#增加输出层
prediction=add_layer(xs,784,10,activation_function=tf.nn.softmax)
#定义loss损失---信息熵
cross_entropy=tf.reduce_mean(-tf.reduce_sum(ys*tf.log(prediction),reduce_indices=[1]))
train_step=tf.train.GradientDescentOptimizer(0.1).minimize(cross_entropy) sess=tf.Session()
#变量的初始化
sess.run(tf.global_variables_initializer()) for i in range(1000):
batch_xs,batch_ys=mnist.train.next_batch(100) #取一部分数据
sess.run(train_step,feed_dict={xs:batch_xs,ys:batch_ys})
if i%50:
print (compute_accuracy(mnist.test.images,mnist.test.labels))
显示结果

1.8TF的分类的更多相关文章
- 神经网络、logistic回归等分类算法简单实现
最近在github上看到一个很有趣的项目,通过文本训练可以让计算机写出特定风格的文章,有人就专门写了一个小项目生成汪峰风格的歌词.看完后有一些自己的小想法,也想做一个玩儿一玩儿.用到的原理是深度学习里 ...
- 开源 iOS 项目分类索引大全 - 待整理
开源 iOS 项目分类索引大全 GitHub 上大概600个开源 iOS 项目的分类和介绍,对于你挑选和使用开源项目应该有帮助 系统基础库 Category/Util sstoolkit 一套Cate ...
- Atitit 图像处理和计算机视觉的分类 三部分 图像处理 图像分析 计算机视觉
Atitit 图像处理和计算机视觉的分类 三部分 图像处理 图像分析 计算机视觉 1.1. 按照当前流行的分类方法,可以分为以下三部分:三部分 图像处理 图像分析 计算机视觉1 1.2. 图像处理需要 ...
- Atitit 知识管理的重要方法 数据来源,聚合,分类,备份,发布 搜索
Atitit 知识管理的重要方法 数据来源,聚合,分类,备份,发布 搜索 1.1. Rss 简易信息聚合(也叫聚合内容 Really Simple Syndication1 1.1. Rss 简易信息 ...
- 8.SVM用于多分类
从前面SVM学习中可以看出来,SVM是一种典型的两类分类器.而现实中要解决的问题,往往是多类的问题.如何由两类分类器得到多类分类器,就是一个值得研究的问题. 以文本分类为例,现成的方法有很多,其中一劳 ...
- SVM分类与回归
SVM(支撑向量机模型)是二(多)分类问题中经常使用的方法,思想比较简单,但是具体实现与求解细节对工程人员来说比较复杂,如需了解SVM的入门知识和中级进阶可点此下载.本文从应用的角度出发,使用Libs ...
- ASP.NET MVC5+EF6+EasyUI 后台管理系统(43)-工作流设计-字段分类设计
系列目录 建立好42节的表之后,每个字段英文表示都是有意义的说明.先建立,就知道表的关系和用处了,当然,我的设计只是一个参考,你可能有很多改进的地方. 我们的工作流具体细节流程是这样的: 最终我们的模 ...
- 从零开始编写自己的C#框架(21)——添加分类类型页面
页面权限与页面控件权限经过简单的调试后,终于启用起来了,以后大家添加新页面时,就必须按照本章介绍的方法,将你新增的页面注册到系统中,这样才能访问与进行相关操作. 下面讲讲如何创建一个分类类型的页面. ...
- scikit-learn一般实例之八:多标签分类
本例模拟一个多标签文档分类问题.数据集基于下面的处理随机生成: 选取标签的数目:泊松(n~Poisson,n_labels) n次,选取类别C:多项式(c~Multinomial,theta) 选取文 ...
随机推荐
- [原]unity3D 相机跟随
using UnityEngine;using System.Collections; public class CameraFollow : MonoBehaviour { p ...
- 【scala】 scala 映射和元组操作(四)
1.映射 Map 定义 ,取值,遍历,排序 2. 元组 定义,取值,拉链操作 import scala.collection.mutable /** * 映射和元组 * * @author xwol ...
- 一些JavaScript基本函数
1.document.write(”");为 输出语句 2.JS中的注释为// 3.传统的HTML文档顺序是:document->html->(head,body) 4.一个浏览 ...
- js获取视频截图
参考:https://segmentfault.com/q/1010000006717959问题:a.获取的好像是第一帧的图?第一帧为透明图时,获取的个透明图片b.得先加载视频到video,做视频上传 ...
- Linux下 PHP 安装pecl_http方法
Linux下自带的PHP不支持HTTP库,需要自己安装 pecl_http组件安装步骤如下: 1. 组件安装 1.1 安装php-devel开发组件 yum install php-devel 1.2 ...
- flexbox子盒子flex属性
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- PHP代码审计笔记--SQL注入
0X01 普通注入 SQL参数拼接,未做任何过滤 <?php $con = mysql_connect("localhost","root"," ...
- 最简单的GLSL,Shader
Vertex Shader void main() { gl_FrontColor = gl_Color; gl_Position = ftransform(); } Fragment Shader ...
- U3D调用7z解压文件
using UnityEngine; using System; using System.IO; using System.Diagnostics; public class Test : Mono ...
- 《Lua程序设计》9.3 以协同程序实现迭代器 学习笔记
例:编写一个迭代器,使其可以遍历某个数组的所有排列组合形式.代码如下: function permgen(a, n) n = n or #a -- 默认n为a的大小 then -- 还需要改变吗? p ...