题目链接:http://poj.org/problem?id=3522

Time Limit: 5000MS Memory Limit: 65536K

Description

Given an undirected weighted graph G, you should find one of spanning trees specified as follows.

The graph G is an ordered pair (VE), where V is a set of vertices {v1v2, …, vn} and E is a set of undirected edges {e1e2, …, em}. Each edge e ∈ E has its weight w(e).

A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.


Figure 5: A graph G and the weights of the edges

For example, a graph G in Figure 5(a) has four vertices {v1v2v3v4} and five undirected edges {e1e2e3e4e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).


Figure 6: Examples of the spanning trees of G

There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees TbTc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.

Your job is to write a program that computes the smallest slimness.

Input

The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.

n m  
a1 b1 w1
   
am bm wm

Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ekwk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (VE) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).

Output

For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.

Sample Input

4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0

Sample Output

1
20
0
-1
-1
1
0
1686
50

在所有生成树里,找到“最大边权值 减去 最小边权值”最小的那棵生成树。

那么,对于已经某个确定的最小边的所有生成树,我们找到最小生成树,它的“最大边权值 减去 最小边权值”就是这些生成树里最小的。

然后,我们枚举最小边即可。

 #include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
#define N 102
#define M 5000
#define INF 2147483647
int n,m;
struct Edge{
int u,v,w;
}e[M];
bool cmp(Edge a,Edge b){return a.w<b.w;}
int par[N];
int find(int x){return( par[x]==x ? x : par[x]=find(par[x]) );}
int kruskal(int st)//获得最小边,作为开始边
{
int i,cnt=;
for (i=;i<=n;i++) par[i]=i;//初始化并查集
for (i=st;i<m;i++)//遍历后面的每条边
{
int x=find(e[i].u),y=find(e[i].v);
if (x != y){//如果这条边的连接的左右节点还未连通
par[y]=x;//将这条边连通
if (++cnt==n-) break;//边计数增加1,如果边数到达了n-1条,那么一棵生成树已完成,跳出
}
}
if (cnt<n-) return -; //如果从开始边往后遍历,遍历完了所有边,依然无法产生一颗生成树,那么返回-1
return e[i].w-e[st].w; //否则就返回这棵生成树的“最大边权值 减去 最小边权值”的值
}
int main()
{
while (scanf("%d%d",&n,&m) && n!=)
{
for (int i=;i<m;i++) scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
sort(e,e+m,cmp);//把边按权值按从小到大排序
int tmp,ans=INF;
for (int i=;i<m;i++)//枚举最小边
{
tmp=kruskal(i);
if(tmp==-) break;//如果从这条最小边开始已经无法产生生成树了,之后显然也不会有生成树了,那么我们就直接跳出即可
if(tmp<ans) ans=tmp;//记录下最小的那个“最大边权值 减去 最小边权值”
}
if(ans==INF) printf("-1\n"); //如果答案没被更新过,那么显然连一棵生成树都没有,按题目要求打印-1
else printf("%d\n",ans);//否则就打印出答案即可
}
return ;
}

POJ 3522 - Slim Span - [kruskal求MST]的更多相关文章

  1. POJ 3522 Slim Span (Kruskal枚举最小边)

    题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include < ...

  2. poj 3522 Slim Span (最小生成树kruskal)

    http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions ...

  3. POJ 3522 Slim Span 最小差值生成树

    Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Gi ...

  4. POJ 3522 Slim Span(极差最小生成树)

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 9546   Accepted: 5076 Descrip ...

  5. POJ 3522 ——Slim Span——————【最小生成树、最大边与最小边最小】

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7102   Accepted: 3761 Descrip ...

  6. POJ 3522 Slim Span

    题目链接http://poj.org/problem?id=3522 kruskal+并查集,注意特殊情况比如1,0 .0,1.1,1 #include<cstdio> #include& ...

  7. POJ 3522 Slim Span 暴力枚举 + 并查集

    http://poj.org/problem?id=3522 一开始做这个题的时候,以为复杂度最多是O(m)左右,然后一直不会.最后居然用了一个近似O(m^2)的62ms过了. 一开始想到排序,然后扫 ...

  8. POJ 3522 Slim Span 最小生成树,暴力 难度:0

    kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...

  9. 最小生成树POJ3522 Slim Span[kruskal]

    Slim Span Time Limit: 5000MS   Memory Limit: 65536K Total Submissions: 7594   Accepted: 4029 Descrip ...

随机推荐

  1. 10 -- 深入使用Spring -- 5...2 在Spring中使用Quartz

    10.5.2 在Spring中使用Quartz Spring 的任务调度抽象层简化了任务调度,在Quartz基础上提供了更好的调度抽象.本系统使用Quartz框架来完成任务调度,创建Quartz的作业 ...

  2. Go之继承的实现

    go的继承是使用匿名字段来实现的 package util //----------------Person---------------- type Person struct { Name str ...

  3. FastJson-fastjson的简单使用(alibaba)

    原文章:http://blog.csdn.net/glarystar/article/details/6654494 原作者:张星的博客 maven配置: <dependency> < ...

  4. 【安全开发】python安全编码规范

    申明:本文非笔者原创,原文转载自:https://github.com/SecurityPaper/SecurityPaper-web/blob/master/_posts/2.SDL%E8%A7%8 ...

  5. SharePoint如何模拟用户

    try { SPSecurity.RunWithElevatedPrivileges(delegate() //用此方法模拟管理员账户运行此事件处理程序 { SPWeb web = SPContext ...

  6. [SublimeText] Sublime Text 2 在 Ubuntu 上安装指南

    1. 下载Sublime Text 2 在官网下载对应系统位数的版本,从压缩包中提取出源代码,解压后文件夹中的"sublime_text"双击即可直接运行. 2. 建立快捷链接 将 ...

  7. thinkphp5.0 实现单文件上传功能

    思路是:在app/ceshi/fire下面有一个index操作方法来渲染显示前端文件,然后前端文件跳转到upload操作方法进行处理,成功显示"文件上传成功",失败显示错误. 首先 ...

  8. 《转》Python学习(17)-python函数基础部分

    http://www.cnblogs.com/BeginMan/p/3171977.html 一.什么是函数.方法.过程 推荐阅读:http://www.cnblogs.com/snandy/arch ...

  9. GCC编译命令常用选项

    GCC是GUN Compiler Collection的简称,除编译程序外,还包含其他相关工具.GCC可将高级语言编写的源代码构建成计算机直接执行的二进制代码.GCC是Linux平台下最常用的编译程序 ...

  10. WP8.1学习系列(第十六章)——交互UX之命令模式

    命令模式   在本文中 命令类型 命令放置 相关主题 你可以在应用商店应用的几个曲面中放置命令和控件,包括应用画布.弹出窗口.对话框和应用栏.在正确的时间选择合适的曲面可能就是易于使用的应用和很难使用 ...