POJ 3522 - Slim Span - [kruskal求MST]
题目链接:http://poj.org/problem?id=3522
Time Limit: 5000MS Memory Limit: 65536K
Description
Given an undirected weighted graph G, you should find one of spanning trees specified as follows.
The graph G is an ordered pair (V, E), where V is a set of vertices {v1, v2, …, vn} and E is a set of undirected edges {e1, e2, …, em}. Each edge e ∈ E has its weight w(e).
A spanning tree T is a tree (a connected subgraph without cycles) which connects all the n vertices with n − 1 edges. The slimness of a spanning tree T is defined as the difference between the largest weight and the smallest weight among the n − 1 edges of T.

Figure 5: A graph G and the weights of the edges
For example, a graph G in Figure 5(a) has four vertices {v1, v2, v3, v4} and five undirected edges {e1, e2, e3, e4, e5}. The weights of the edges are w(e1) = 3, w(e2) = 5, w(e3) = 6, w(e4) = 6, w(e5) = 7 as shown in Figure 5(b).

Figure 6: Examples of the spanning trees of G
There are several spanning trees for G. Four of them are depicted in Figure 6(a)~(d). The spanning tree Ta in Figure 6(a) has three edges whose weights are 3, 6 and 7. The largest weight is 7 and the smallest weight is 3 so that the slimness of the tree Ta is 4. The slimnesses of spanning trees Tb, Tc and Td shown in Figure 6(b), (c) and (d) are 3, 2 and 1, respectively. You can easily see the slimness of any other spanning tree is greater than or equal to 1, thus the spanning tree Td in Figure 6(d) is one of the slimmest spanning trees whose slimness is 1.
Your job is to write a program that computes the smallest slimness.
Input
The input consists of multiple datasets, followed by a line containing two zeros separated by a space. Each dataset has the following format.
n | m | |
a1 | b1 | w1 |
⋮ | ||
am | bm | wm |
Every input item in a dataset is a non-negative integer. Items in a line are separated by a space. n is the number of the vertices and m the number of the edges. You can assume 2 ≤ n ≤ 100 and 0 ≤ m ≤ n(n − 1)/2. ak and bk (k = 1, …, m) are positive integers less than or equal to n, which represent the two vertices vak and vbk connected by the kth edge ek. wk is a positive integer less than or equal to 10000, which indicates the weight of ek. You can assume that the graph G = (V, E) is simple, that is, there are no self-loops (that connect the same vertex) nor parallel edges (that are two or more edges whose both ends are the same two vertices).
Output
For each dataset, if the graph has spanning trees, the smallest slimness among them should be printed. Otherwise, −1 should be printed. An output should not contain extra characters.
Sample Input
4 5
1 2 3
1 3 5
1 4 6
2 4 6
3 4 7
4 6
1 2 10
1 3 100
1 4 90
2 3 20
2 4 80
3 4 40
2 1
1 2 1
3 0
3 1
1 2 1
3 3
1 2 2
2 3 5
1 3 6
5 10
1 2 110
1 3 120
1 4 130
1 5 120
2 3 110
2 4 120
2 5 130
3 4 120
3 5 110
4 5 120
5 10
1 2 9384
1 3 887
1 4 2778
1 5 6916
2 3 7794
2 4 8336
2 5 5387
3 4 493
3 5 6650
4 5 1422
5 8
1 2 1
2 3 100
3 4 100
4 5 100
1 5 50
2 5 50
3 5 50
4 1 150
0 0
Sample Output
1
20
0
-1
-1
1
0
1686
50
在所有生成树里,找到“最大边权值 减去 最小边权值”最小的那棵生成树。
那么,对于已经某个确定的最小边的所有生成树,我们找到最小生成树,它的“最大边权值 减去 最小边权值”就是这些生成树里最小的。
然后,我们枚举最小边即可。
#include<cstdio>
#include<iostream>
#include<algorithm>
using namespace std;
#define N 102
#define M 5000
#define INF 2147483647
int n,m;
struct Edge{
int u,v,w;
}e[M];
bool cmp(Edge a,Edge b){return a.w<b.w;}
int par[N];
int find(int x){return( par[x]==x ? x : par[x]=find(par[x]) );}
int kruskal(int st)//获得最小边,作为开始边
{
int i,cnt=;
for (i=;i<=n;i++) par[i]=i;//初始化并查集
for (i=st;i<m;i++)//遍历后面的每条边
{
int x=find(e[i].u),y=find(e[i].v);
if (x != y){//如果这条边的连接的左右节点还未连通
par[y]=x;//将这条边连通
if (++cnt==n-) break;//边计数增加1,如果边数到达了n-1条,那么一棵生成树已完成,跳出
}
}
if (cnt<n-) return -; //如果从开始边往后遍历,遍历完了所有边,依然无法产生一颗生成树,那么返回-1
return e[i].w-e[st].w; //否则就返回这棵生成树的“最大边权值 减去 最小边权值”的值
}
int main()
{
while (scanf("%d%d",&n,&m) && n!=)
{
for (int i=;i<m;i++) scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
sort(e,e+m,cmp);//把边按权值按从小到大排序
int tmp,ans=INF;
for (int i=;i<m;i++)//枚举最小边
{
tmp=kruskal(i);
if(tmp==-) break;//如果从这条最小边开始已经无法产生生成树了,之后显然也不会有生成树了,那么我们就直接跳出即可
if(tmp<ans) ans=tmp;//记录下最小的那个“最大边权值 减去 最小边权值”
}
if(ans==INF) printf("-1\n"); //如果答案没被更新过,那么显然连一棵生成树都没有,按题目要求打印-1
else printf("%d\n",ans);//否则就打印出答案即可
}
return ;
}
POJ 3522 - Slim Span - [kruskal求MST]的更多相关文章
- POJ 3522 Slim Span (Kruskal枚举最小边)
题意: 求出最小生成树中最大边与最小边差距的最小值. 分析: 排序,枚举最小边, 用最小边构造最小生成树, 没法构造了就退出 #include <stdio.h> #include < ...
- poj 3522 Slim Span (最小生成树kruskal)
http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions ...
- POJ 3522 Slim Span 最小差值生成树
Slim Span Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?id=3522 Description Gi ...
- POJ 3522 Slim Span(极差最小生成树)
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 9546 Accepted: 5076 Descrip ...
- POJ 3522 ——Slim Span——————【最小生成树、最大边与最小边最小】
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7102 Accepted: 3761 Descrip ...
- POJ 3522 Slim Span
题目链接http://poj.org/problem?id=3522 kruskal+并查集,注意特殊情况比如1,0 .0,1.1,1 #include<cstdio> #include& ...
- POJ 3522 Slim Span 暴力枚举 + 并查集
http://poj.org/problem?id=3522 一开始做这个题的时候,以为复杂度最多是O(m)左右,然后一直不会.最后居然用了一个近似O(m^2)的62ms过了. 一开始想到排序,然后扫 ...
- POJ 3522 Slim Span 最小生成树,暴力 难度:0
kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...
- 最小生成树POJ3522 Slim Span[kruskal]
Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 7594 Accepted: 4029 Descrip ...
随机推荐
- Eclipse------新建文件时没有JSP File解决方法
1.为没有web选项的eclipse添加web and JavaEE插件 .在Eclipse中菜单help选项中选择install new software选项 .在work with 栏中输入 Ju ...
- Git------如何使用Git Bash Here提交代码
转载:码云帮助文档地址 http://git.mydoc.io/?t=154712 1.打开“Git Bash Here” 2.输入: ssh-keygen -t rsa -C "xxxxx ...
- cocos2d-x 弹出对话框
登陆界面有一点注册按钮,点击之后弹出一个框,让用户输入一些信息; 在网上找的一些方法都是派生一个类,然后自己实现; 我觉得太麻烦了. 我使用分层的方式来显示, 启动界面就一个,背景图片加几个按钮:登陆 ...
- redis make错误处理
cc: ../deps/hiredis/libhiredis.a: No such file or directory cc: ../deps/lua/src/liblua.a: No such fi ...
- 使用HttpClient访问url的工具类
maven依赖jar包配置: <dependency> <groupId>org.apache.httpcomponents</groupId> <artif ...
- Java的多线程
Java使用Thread代表线程,所有的线程对象都必须是Thread类或其子类的实例.每个线程的作用就是执行一段程序流(完成一定的任务). Java使用线程执行体来代表这段程序流. 1. 继承Thre ...
- using 释放内存的写法
using (FileStream fileStream = File.Open(fileName,FileMode.Open,FileAccess.Read,FileShare.ReadWrite) ...
- TCPdump指定时间或者指定大小进行循环抓取报文
背景:我们用tcpdump工具循环抓取网卡上的报文,我们会遇到如下情况: 1. 抓取报文后隔指定的时间保存一次: 2. 抓取报文后达到指定的大小保存一次: 本文就这两种情况给出tcpdump的使用方法 ...
- c++学习笔记—单链表基本操作的实现
用c++语言实现的单链表基本操作,包括单链表的创建(包括头插法和尾插法建表).结点的查找.删除.排序.打印输出.逆置.链表销毁等基本操作. IDE:vs2013 具体实现代码如下: #include ...
- activity的启动模式有哪些?
Activity启动模式设置: <activity android:name=".MainActivity" android:launchMode="standar ...