SparkSQL---实战应用

数据集 :http://grouplens.org/datasets/movielens/ MovieLens 1M Datase

相关数据文件 :

users.dat ---UserID::Gender::Age::Occupation::Zip-code

movies.dat --- MovieID::Title::Genres

ratings.dat ---UserID::MovieID::Rating::Timestamp

SogouQ.mini

完成以下业务需求:

1. 年龄段在“18-24”的男性年轻人,最喜欢看哪10部

2.得分最高的10部电影;看过电影最多的前10个人;女性看多最多的10部电影;男性看过最多 的10部电影

3.利用数据集SogouQ2012.mini.tar.gz 将数据按照访问次数进行排序,求访问量前10的网站

代码如下:

import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SQLContext
import org.apache.spark.sql.Dataset object hw_SparkSql {
case class User(uid: String, xb: String,age:Int,V4:String,V5:String)
case class Movie(mid:String,name:String,t:String)
case class Rating(uid: String, mid: String,V3:Double,V4:String)
case class Brower(V1: String, V2: String,V3:String,V4:String,V5:String,V6:String) def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("ReadJSON").setMaster("local").set("spark.executor.memory","50g").set("spark.driver.maxResultSize","50g")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)

  //隐式转换
import sqlContext.implicits._
val UserInfo = sc.textFile("C:\\Users\\BIGDATA\\Desktop\\文件\\BigData\\Spark\\3.SparkCore_2\\data\\data\\users.dat").map(_.split("::")).map(p => User(p(0), p(1),p(2).trim().toInt,p(3),p(4))).toDF()
UserInfo.registerTempTable("User")
val MovieInfo = sc.textFile("C:\\Users\\BIGDATA\\Desktop\\文件\\BigData\\Spark\\3.SparkCore_2\\data\\data\\movies.dat").map(_.split("::")).map(p => Movie(p(0),p(1),p(2))).toDF()
MovieInfo.registerTempTable("Movie")
val RatingsInfo = sc.textFile("C:\\Users\\BIGDATA\\Desktop\\文件\\BigData\\Spark\\3.SparkCore_2\\data\\data\\ratings.dat").map(_.split("::")).map(p => Rating(p(0), p(1),p(2).toDouble,p(3))).toDF()
RatingsInfo.registerTempTable("Rating")
val BrowerInfo = sc.textFile("C:\\Users\\BIGDATA\\Desktop\\文件\\BigData\\Spark\\3.SparkCore_2\\SogouQ2012.mini\\SogouQ.mini").map(_.split("\t")).map(p =>Brower(p(0), p(1),p(2),p(3),p(4),p(5))).toDF()
BrowerInfo.registerTempTable("Brower") //年龄段在“18-24”的男性年轻人,最喜欢看哪10部
val top10_M_18_24 = sqlContext.sql("select x.n as name,count(*) as count from ( select distinct Rating.mid as m, Rating.uid as u, Movie.name as n FROM Rating,User,Movie WHERE User.age>=18 and User.age<=24 and User.xb=\"M\" and User.uid=Rating.uid and Movie.mid=Rating.mid)as x group by x.n order by count desc ")
top10_M_18_24.show(10) //看过电影最多的前10个人
val top10_pepole= sqlContext.sql("select uid,count(uid)as count from Rating group by uid order by count desc");
top10_pepole.show(10); //得分最高的10部电影
val top10M_score=sqlContext.sql("select mid,(sum(V3)/count(V3)) as av from Rating group by mid order by av desc")
top10M_score.show(10) //女性看的最多的10部电影
val top10_Female = sqlContext.sql("select x.n,count(*) as c from ( select distinct Rating.mid as m, Rating.uid as u, Movie.name as n FROM Rating,User,Movie WHERE User.xb=\"F\" and User.uid=Rating.uid and Movie.mid=Rating.mid)as x group by x.n order by c desc ")
top10_Female.show(10) //男性看的最多的10部电影
val top10_Male = sqlContext.sql("select x.n,count(*) as c from ( select distinct Rating.mid as m, Rating.uid as u, Movie.name as n FROM Rating,User,Movie WHERE User.xb=\"M\" and User.uid=Rating.uid and Movie.mid=Rating.mid)as x group by x.n order by c desc ")
top10_Male.show(10) //访问量前10的网站
val Top10_brower = sqlContext.sql("select V6 as name,count(*) as count from Brower group by V6 order by count desc ")
Top10_brower.show(10)
} }

  

SparkSQL---实战应用的更多相关文章

  1. sparkSQL实战详解

    摘要   如果要想真正的掌握sparkSQL编程,首先要对sparkSQL的整体框架以及sparkSQL到底能帮助我们解决什么问题有一个整体的认识,然后就是对各个层级关系有一个清晰的认识后,才能真正的 ...

  2. Spark系列-SparkSQL实战

    Spark系列-初体验(数据准备篇) Spark系列-核心概念 Spark系列-SparkSQL 之前系统的计算大部分都是基于Kettle + Hive的方式,但是因为最近数据暴涨,很多Job的执行时 ...

  3. java 与大数据学习较好的网站

    C# C#中 Thread,Task,Async/Await,IAsyncResult 的那些事儿!https://www.cnblogs.com/doforfuture/p/6293926.html ...

  4. Spark Dataset DataFrame 操作

    Spark Dataset DataFrame 操作 相关博文参考 sparksql中dataframe的用法 一.Spark2 Dataset DataFrame空值null,NaN判断和处理 1. ...

  5. Spark入门实战系列--6.SparkSQL(上)--SparkSQL简介

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .SparkSQL的发展历程 1.1 Hive and Shark SparkSQL的前身是 ...

  6. Spark入门实战系列--6.SparkSQL(中)--深入了解SparkSQL运行计划及调优

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 1.1  运行环境说明 1.1.1 硬软件环境 线程,主频2.2G,10G内存 l  虚拟软 ...

  7. Spark入门实战系列--6.SparkSQL(下)--Spark实战应用

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .运行环境说明 1.1 硬软件环境 线程,主频2.2G,10G内存 l  虚拟软件:VMwa ...

  8. SparkSQL大数据实战:揭开Join的神秘面纱

    本文来自 网易云社区 . Join操作是数据库和大数据计算中的高级特性,大多数场景都需要进行复杂的Join操作,本文从原理层面介绍了SparkSQL支持的常见Join算法及其适用场景. Join背景介 ...

  9. Spark大型电商项目实战-及其改良(3) 分析sparkSQL语句的性能影响

    之前的运行数据被清除了,只能再运行一次,对比一下sparkSQL语句的影响 纯SQL的时间 对应时间表 th:first-child,.table-bordered tbody:first-child ...

  10. Spark大型电商项目实战-及其改良(1) 比对sparkSQL和纯RDD实现的结果

    代码存在码云:https://coding.net/u/funcfans/p/sparkProject/git 代码主要学习https://blog.csdn.net/u012318074/artic ...

随机推荐

  1. Android下的联网下载的操作

    一:从网络下载图片 MainActivity: NetService 1.由路径获取Url 2.使用url打开HttpURLConnection连接 3.根据路径查找本地sd卡是否有缓存文件,如果文件 ...

  2. es5 温故而知新 简单继承示例

    // 矩形(构造器/父类) function Rectangle (height, width) { this.height = height; this.width = width; } // 获取 ...

  3. Python Tensorflow CNN 识别验证码

    Python+Tensorflow的CNN技术快速识别验证码 文章来源于: https://www.jianshu.com/p/26ff7b9075a1 验证码处理的流程是:验证码分析和处理—— te ...

  4. Google Guava中的前置条件

    前置条件:让方法调用的前置条件判断更简单. Guava在Preconditions类中提供了若干前置条件判断的实用方法,我们建议[在Eclipse中静态导入这些方法]每个方法都有三个变种: check ...

  5. CentOS 7 设置iptables防火墙开放proftpd端口

    由于ftp的被动模式是这样的,客户端跟服务器端的21号端口交互信令,服务器端开启21号端口能够使客户端登录以及查看目录.但是ftp被动模式用于传输数据的端口却不是21,而是大于1024的随机或配置文件 ...

  6. eclipse 运行 emulator时,PANIC:Could not open emulator 的解决办法

    使用eclipse启动emulator的时候,出现PANIC:Could not open emulator,模拟器无法正常的运行. 经过搜索得知,因为我的SDK的环境变量出问题,需要重新配置下环境变 ...

  7. Atitit 遍历文件夹算法 autoit attilax总结

    Atitit 遍历文件夹算法 autoit attilax总结 _FileListToArray Lists files and\or folders in a specified folder (S ...

  8. [svc]ext4文件删除&访问原理

    文件名信息存放在哪里? LINUX的文件名是存在父目录的block里面,并指向这个文件的inode节点,这个文件的inode节点再标记指向存放这个文件的block的数据块.我们删除一个文件,实际上并不 ...

  9. Android动画三部曲之中的一个 View Animation &amp; LayoutAnimation

    转载请注明出处:http://blog.csdn.net/crazy1235/article/details/50612827 本篇文章对android的Tween动画和帧动画以及布局动画进行总结. ...

  10. HTML中Zen Coding

    嵌套运算符 嵌套运算符用于以缩写的方式安排元素在生成文档树中的位置:将其放在内部或成为相邻的元素. 子: > 可以使用 > 运算符指定嵌套元素在另一个元素内部: div>ul> ...