Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d .

We use Cartesian coordinate system, defining the coasting is the x -axis. The sea side is above x -axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x -y coordinates.

Input

The input consists of several test cases. The first line of each case contains two integers n (1n1000)and d , where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.

The input is terminated by a line containing pair of zeros.

Output

For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. `-1' installation means no solution for that case.

Sample Input

3 2
1 2
-3 1
2 1 1 2
0 2 0 0

Sample Output

Case 1: 2
Case 2: 1

题意:给定n个岛屿坐标,和雷达半径,雷达只能放在x轴上,求出最少放几个雷达。

思路:贪心。每个岛屿都有最左和最右最远放雷达能覆盖到的点,我们把这作为左右区间。只要在区间中选中一个位置放雷达。就可以满足该岛屿被覆盖,转换为区间选点问题。

代码:

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
using namespace std; double dd;
int n, i, judge, num, ans, j;
struct D {
double x;
double y;
double l;
double r;
int v;
} d[1005]; int cmp(D a, D b) {
if (a.r != b.r)
return a.r < b.r;
return a.l > b.l;
}
int main() {
int t = 1;
while (~scanf("%d%lf", &n, &dd) && n || dd) {
judge = 1; num = 0; ans = 0;
memset(d, 0, sizeof(d));
for (i = 0; i < n; i ++) {
scanf("%lf%lf", &d[i].x, &d[i].y);
if (d[i].y > dd)
judge = 0;
d[i].r = sqrt(dd * dd - d[i].y * d[i].y) + d[i].x;
d[i].l = d[i].x - sqrt(dd * dd - d[i].y * d[i].y); }
sort(d, d + n, cmp);
printf("Case %d: ", t ++);
if (judge) {
while (num < n) {
for (i = 0; i < n; i ++) {
if (!d[i].v) {
double x = d[i].r;
for (j = i; j < n; j ++) {
if (d[j].l <= x && !d[j].v) {
d[j].v = 1;
num ++;
}
}
ans ++;
break;
}
}
}
printf("%d\n", ans);
}
else printf("-1\n");
}
return 0;
}

UVAlive 2519 Radar Installation (区间选点问题)的更多相关文章

  1. UVALive 2519 Radar Installation 雷达扫描 区间选点问题

    题意:在坐标轴中给出n个岛屿的坐标,以及雷达的扫描距离,要求在y=0线上放尽量少的雷达能够覆盖全部岛屿. 很明显的区间选点问题. 代码: /* * Author: illuz <iilluzen ...

  2. poj1328 Radar Installation 区间贪心

    题目大意: 在X轴选择尽量少的点作为圆心,作半径为d的圆.使得这些圆能覆盖所有的点. 思路: 把每个点都转化到X轴上.也就是可以覆盖这个点的圆心的位置的范围[a,b].然后按照每个点对应的a从小到大排 ...

  3. POJ - 1328 Radar Installation(贪心区间选点+小学平面几何)

    Input The input consists of several test cases. The first line of each case contains two integers n ...

  4. poj 1328 Radar Installation 【贪心】【区间选点问题】

    Radar Installation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 54798   Accepted: 12 ...

  5. POJ 1328 Radar Installation 【贪心 区间选点】

    解题思路:给出n个岛屿,n个岛屿的坐标分别为(a1,b1),(a2,b2)-----(an,bn),雷达的覆盖半径为r 求所有的岛屿都被覆盖所需要的最少的雷达数目. 首先将岛屿坐标进行处理,因为雷达的 ...

  6. poj 1328 Radar Installation【贪心区间选点】

    Radar Installation Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 20000/10000K (Java/Other) ...

  7. POJ1328 Radar Installation 【贪心&#183;区间选点】

    Radar Installation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 54593   Accepted: 12 ...

  8. Radar Installation(POJ 1328 区间贪心)

    Radar Installation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 68578   Accepted: 15 ...

  9. POJ 1328 Radar Installation(很新颖的贪心,区间贪心)

    Radar Installation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 106491   Accepted: 2 ...

随机推荐

  1. c语言,const被绕过

    注意在现在的gcc中, const可能会被用指针绕过. linux: #include "stdlib.h" #include <stdio.h> int t1() { ...

  2. UIViewController加载过程

    UIViewController是视图和数据的桥梁,UIViewController是所有controller的基类,ios内置了很多试图控制器,如导航控制器,tableViewController等 ...

  3. Recipes — Bottle 0.13-dev documentation

    Recipes - Bottle 0.13-dev documentation Recipes¶ This is a collection of code snippets and examples ...

  4. &#181;C/OS-II版本升级指南

    IDE:     MDK V4+ MCU:   LPC17xx(Cortex-M3) RTOS: µC/OS-II        升级顺序:V2.52->V2.62->V2.76-> ...

  5. 非确定有限状态自动机的构建(一)——NFA的定义和实现

    保留版权,转载需注明出处(http://blog.csdn.net/panjunbiao). 非确定有限状态自动机(Nondeterministic Finite Automata,NFA)由以下元素 ...

  6. ASP.NET成员资格与角色管理配置内容

    Web.config中进行配置 以便于连接数据库,使用微软提供的Membership类.·····等   <?xml version="1.0" encoding=" ...

  7. 时间戳timestamp

    1 时间戳 数据库中自动生成的 唯一的 二进制的数据,通常用作给数据表的行添加版本戳的机制. timestamp与时间和日期无关. timestamp存储大小为8字节. 一个数据表只能有一个times ...

  8. myeclispe启动后报错 Subclipse talks to Subversion via a Java API that requires access to native libraries.

    myeclispe 中SVN插件常遇到的异常: Subclipse talks to Subversion via a Java API that requires access to native ...

  9. Windows Azure 安全最佳实践 - 第 2 部分:Azure 提供哪些现成可用的安全机制

    在WindowsAzure安全最佳实践 - 部分:深度解析挑战防御对策中,我介绍了威胁形势以及在您的应用程序中采用深度防御的计划. 在本部分中,我将说明 Windows Azure的安全是一项共同责任 ...

  10. 基于visual Studio2013解决C语言竞赛题之1086任务分配

        题目 解决代码及点评 /************************************************************************/ /* ...