Assume the coasting is an infinite straight line. Land is in one side of coasting, sea in the other. Each small island is a point locating in the sea side. And any radar installation, locating on the coasting, can only cover d distance, so an island in the sea can be covered by a radius installation, if the distance between them is at most d .

We use Cartesian coordinate system, defining the coasting is the x -axis. The sea side is above x -axis, and the land side below. Given the position of each island in the sea, and given the distance of the coverage of the radar installation, your task is to write a program to find the minimal number of radar installations to cover all the islands. Note that the position of an island is represented by its x -y coordinates.

Input

The input consists of several test cases. The first line of each case contains two integers n (1n1000)and d , where n is the number of islands in the sea and d is the distance of coverage of the radar installation. This is followed by n lines each containing two integers representing the coordinate of the position of each island. Then a blank line follows to separate the cases.

The input is terminated by a line containing pair of zeros.

Output

For each test case output one line consisting of the test case number followed by the minimal number of radar installations needed. `-1' installation means no solution for that case.

Sample Input

3 2
1 2
-3 1
2 1 1 2
0 2 0 0

Sample Output

Case 1: 2
Case 2: 1

题意:给定n个岛屿坐标,和雷达半径,雷达只能放在x轴上,求出最少放几个雷达。

思路:贪心。每个岛屿都有最左和最右最远放雷达能覆盖到的点,我们把这作为左右区间。只要在区间中选中一个位置放雷达。就可以满足该岛屿被覆盖,转换为区间选点问题。

代码:

#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
using namespace std; double dd;
int n, i, judge, num, ans, j;
struct D {
double x;
double y;
double l;
double r;
int v;
} d[1005]; int cmp(D a, D b) {
if (a.r != b.r)
return a.r < b.r;
return a.l > b.l;
}
int main() {
int t = 1;
while (~scanf("%d%lf", &n, &dd) && n || dd) {
judge = 1; num = 0; ans = 0;
memset(d, 0, sizeof(d));
for (i = 0; i < n; i ++) {
scanf("%lf%lf", &d[i].x, &d[i].y);
if (d[i].y > dd)
judge = 0;
d[i].r = sqrt(dd * dd - d[i].y * d[i].y) + d[i].x;
d[i].l = d[i].x - sqrt(dd * dd - d[i].y * d[i].y); }
sort(d, d + n, cmp);
printf("Case %d: ", t ++);
if (judge) {
while (num < n) {
for (i = 0; i < n; i ++) {
if (!d[i].v) {
double x = d[i].r;
for (j = i; j < n; j ++) {
if (d[j].l <= x && !d[j].v) {
d[j].v = 1;
num ++;
}
}
ans ++;
break;
}
}
}
printf("%d\n", ans);
}
else printf("-1\n");
}
return 0;
}

UVAlive 2519 Radar Installation (区间选点问题)的更多相关文章

  1. UVALive 2519 Radar Installation 雷达扫描 区间选点问题

    题意:在坐标轴中给出n个岛屿的坐标,以及雷达的扫描距离,要求在y=0线上放尽量少的雷达能够覆盖全部岛屿. 很明显的区间选点问题. 代码: /* * Author: illuz <iilluzen ...

  2. poj1328 Radar Installation 区间贪心

    题目大意: 在X轴选择尽量少的点作为圆心,作半径为d的圆.使得这些圆能覆盖所有的点. 思路: 把每个点都转化到X轴上.也就是可以覆盖这个点的圆心的位置的范围[a,b].然后按照每个点对应的a从小到大排 ...

  3. POJ - 1328 Radar Installation(贪心区间选点+小学平面几何)

    Input The input consists of several test cases. The first line of each case contains two integers n ...

  4. poj 1328 Radar Installation 【贪心】【区间选点问题】

    Radar Installation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 54798   Accepted: 12 ...

  5. POJ 1328 Radar Installation 【贪心 区间选点】

    解题思路:给出n个岛屿,n个岛屿的坐标分别为(a1,b1),(a2,b2)-----(an,bn),雷达的覆盖半径为r 求所有的岛屿都被覆盖所需要的最少的雷达数目. 首先将岛屿坐标进行处理,因为雷达的 ...

  6. poj 1328 Radar Installation【贪心区间选点】

    Radar Installation Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 20000/10000K (Java/Other) ...

  7. POJ1328 Radar Installation 【贪心&#183;区间选点】

    Radar Installation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 54593   Accepted: 12 ...

  8. Radar Installation(POJ 1328 区间贪心)

    Radar Installation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 68578   Accepted: 15 ...

  9. POJ 1328 Radar Installation(很新颖的贪心,区间贪心)

    Radar Installation Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 106491   Accepted: 2 ...

随机推荐

  1. 【linux】arm mm内存管理

    欢迎转载,转载时请保留作者信息,谢谢. 邮箱:tangzhongp@163.com 博客园地址:http://www.cnblogs.com/embedded-tzp Csdn博客地址:http:// ...

  2. [置顶] c#验证码识别、图片二值化、分割、分类、识别

    c# 验证码的识别主要分为预处理.分割.识别三个步骤 首先我从网站上下载验证码 处理结果如下: 1.图片预处理,即二值化图片 *就是将图像上的像素点的灰度值设置为0或255. 原理如下: 代码如下: ...

  3. VC动态轨迹画线

    分类: 2.4 线程/图形学2010-04-30 22:14 1878人阅读 评论(0) 收藏 举报 文档null 这是一个绘制直线的简单绘图程序,能过实现动态轨迹画线,在拖动时产生临时线来表示可能画 ...

  4. ICMP:Internet控制报文协议

    ICMP:Internet控制报文协议. 是IP层的组成部分.传递差错报文或其他信息. ICMP报文被封装在IP数据报内部: 详细格式例如以下所看到的: 个字段含义例如以下: 8位类型. 表示该ICM ...

  5. Leetcode: Median of Two Sorted Arrays. java.

    There are two sorted arrays A and B of size m and n respectively. Find the median of the two sorted ...

  6. javascript函数的声明,及返回值

    <1> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title>< ...

  7. 可执行程序的入口点在那里?(强化概念:程序真正的入口是mainCRTstartup)

    今天终于有时间来研究一下一个很大很大的工程编译成一个exe和若干dll后,程序是如果执行它的第一条指令的?操作系统以什么规则来找到应该执行的第一条指令(或说如何找到第一个入口函数的)? 我们以前写wi ...

  8. 【VBA研究】VBA通过HTTP协议实现邮件轨迹跟踪查询

    作者:iamlasong 1.接口说明 通过互联网訪问,运单跟踪信息查询接口基于HTTP协议开发,接口为RESTFul风格的Web Service,信息交互过程为用户按我方提供的web service ...

  9. JQuery Ajax实例总结

    jQuery确实是一个挺好的轻量级的JS框架,能帮助我们快速的开发JS应用,并在一定程度上改变了我们写JavaScript代码的习惯. 废话少说,直接进入正题,我们先来看一些简单的方法,这些方法都是对 ...

  10. MyEclipse-6.5注冊码生成器源代码

    打开MyEclipse新建一个Javaproject,然后新建类,粘贴例如以下代码,就可以生成MyEclipse的注冊码 import java.io.BufferedReader; import j ...