摘要:

所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用她最接近的k个邻居来代表。kNN算法的核心思想是如果一个样本在特征空间中的k个最相似的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。
邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法可以说是整个数据挖掘分类技术中最简单的方法了。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用她最接近的k个邻居来代表。
kNN算法的核心思想是如果一个样本在特征空间中的k个最相似的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 kNN方法在类别决策时,只与极少量的相邻样本有关。由于kNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,kNN方法较其他方法更为适合。

1简介编辑

右图中,绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果K=5,由于蓝色四方形比例为3/5,因此绿色圆被赋予蓝色四方形类。

KNN算法的决策过程

K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 KNN方法虽然从原理上也依赖于极限定理,但在类别决策时,只与极少量的相邻样本有关。由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为适合。
KNN算法不仅可以用于分类,还可以用于回归。通过找出一个样本的k个最近邻居,将这些邻居的属性的平均值赋给该样本,就可以得到该样本的属性。更有用的方法是将不同距离的邻居对该样本产生的影响给予不同的权值(weight),如权值与距离成反比。

2缺点编辑

该算法在分类时有个主要的不足是,当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数。 该算法只计算“最近的”邻居样本,某一类的样本数量很大,那么或者这类样本并不接近目标样本,或者这类样本很靠近目标样本。无论怎样,数量并不能影响运行结果。可以采用权值的方法(和该样本距离小的邻居权值大)来改进。该方法的另一个不足之处是计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点。目前常用的解决方法是事先对已知样本点进行剪辑,事先去除对分类作用不大的样本。该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量较小的类域采用这种算法比较容易产生误分。

3改进策略编辑

在以上的处理过程中,所有的临近K值对结果点的影响效果是一样的,不管这个点离它有多远。而在实际应用中,我们可以采取附加权值的方法,放大临近点对结果的影响[1]
转自:百度百科

分类算法-----KNN的更多相关文章

  1. 数据挖掘之分类算法---knn算法(有matlab例子)

    knn算法(k-Nearest Neighbor algorithm).是一种经典的分类算法.注意,不是聚类算法.所以这种分类算法 必然包括了训练过程. 然而和一般性的分类算法不同,knn算法是一种懒 ...

  2. 数据挖掘之分类算法---knn算法(有matlab样例)

    knn算法(k-Nearest Neighbor algorithm).是一种经典的分类算法. 注意,不是聚类算法.所以这样的分类算法必定包含了训练过程. 然而和一般性的分类算法不同,knn算法是一种 ...

  3. 28.分类算法---KNN

    1.工作原理: 存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类对应的关系.输入没有标签的数据后,将新数据中的每个特征与样本集中数据对应的特 ...

  4. 数学建模:2.监督学习--分类分析- KNN最邻近分类算法

    1.分类分析 分类(Classification)指的是从数据中选出已经分好类的训练集,在该训练集上运用数据挖掘分类的技术,建立分类模型,对于没有分类的数据进行分类的分析方法. 分类问题的应用场景:分 ...

  5. K近邻分类算法实现 in Python

    K近邻(KNN):分类算法 * KNN是non-parametric分类器(不做分布形式的假设,直接从数据估计概率密度),是memory-based learning. * KNN不适用于高维数据(c ...

  6. 基本分类方法——KNN(K近邻)算法

    在这篇文章 http://www.cnblogs.com/charlesblc/p/6193867.html 讲SVM的过程中,提到了KNN算法.有点熟悉,上网一查,居然就是K近邻算法,机器学习的入门 ...

  7. knn分类算法学习

    K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的 ...

  8. KNN邻近分类算法

    K邻近(k-Nearest Neighbor,KNN)分类算法是最简单的机器学习算法了.它采用测量不同特征值之间的距离方法进行分类.它的思想很简单:计算一个点A与其他所有点之间的距离,取出与该点最近的 ...

  9. kNN算法:K最近邻(kNN,k-NearestNeighbor)分类算法

    一.KNN算法概述 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一.所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它 ...

随机推荐

  1. 接入支付宝出现交易订单处理失败,请稍后再试(ALI64)的错误【转】

    接入第三方平台的时候,有时虽然按照文档来做,但是总是还会有各种各样的问题. 上次在接入支付宝的时候就碰到了交易订单处理失败,请稍后再试(ALI64)这样的错误,后来经过排查和总结,一般来讲这种问题都是 ...

  2. hdu 5584 gcd/lcm/数学公式

    input T 1<=T<=1000 x y output 有多少个起点可以走n(n>=0)步走到(x,y),只能从(x,y)走到(x,y+lcm(x,y))/(x+lcm(x,y) ...

  3. Oracle 10gR2 Dataguard搭建(非duplicate方式)

    Oracle 10gR2 Dataguard搭建(非duplicate方式) 我的实验环境: 源生产库(主库): IP地址:192.168.1.30 Oracle 10.2.0.5 单实例 新DG库( ...

  4. HttpUtil工具类

    HttpUtil工具类 /** * 向指定URL发送GET方法的请求 * * @param url * 发送请求的URL * @param params * 请求参数,请求参数应该是name1=val ...

  5. SCU 1069 POJ 2955 Brackets

    区间DP #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> ...

  6. Volist标签

    Volist标签主要用于在模板中循环输出数据集或者多维数组. volist标签(循环输出数据) 闭合 非闭合标签 属性 name(必须):要输出的数据模板变量 id(必须):循环变量 offset(可 ...

  7. /etc/fstab 文件解释

    /etc/fstab 文件解释 文件fstab包含了你的电脑上的存储设备及其文件系统的信息.它是决定一个硬盘(分区)被怎样使用或者说整合到整个系统中的唯一文件. 这个文件的全路径是/etc/fstab ...

  8. As3.0 视频缓冲、下载总结

    来源:http://www.cuplayer.com/player/PlayerCodeAs/2012/0913404.html 利用NetStream的以下属性: bufferTime — 缓冲区大 ...

  9. 发现在看完objc基本语法之后,还是看Apple文档比较有用。

    现在已经停止找中文资料了,因为很多例子已经过时,运行不出来. 看完objc基本语法以后,Apple的资料也看得懂了. 还是应该跟着Apple的入门指南开始学,今后也应该以Apple的文档为主.

  10. sql server 2000/2005递归

    /* 递归查询 塗聚文---SQL Server 2005环境下的实现: */--生成测试数据 create table Dept(ID int,ParentID int,msg varchar(20 ...