描述
Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1 US Dollar buys 0.5 British pound, 1 British pound buys 10.0 French francs, and 1 French franc buys 0.21 US dollar. Then, by converting currencies, a clever trader can start with 1 US dollar and buy 0.5 * 10.0 * 0.21 = 1.05 US dollars, making a profit of 5 percent.

Your job is to write a program that takes a list of currency exchange rates as input and then determines whether arbitrage is possible or not.

 
输入
The input file will contain one or more test cases. Om the first line of each test case there is an integer n (1<=n<=30), representing the number of different currencies. The next n lines each contain the name of one currency. Within a name no spaces will appear. The next line contains one integer m, representing the length of the table to follow. The last m lines each contain the name ci of a source currency, a real number rij which represents the exchange rate from ci to cj and a name cj of the destination currency. Exchanges which do not appear in the table are impossible.
Test cases are separated from each other by a blank line. Input is terminated by a value of zero (0) for n.
输出
For each test case, print one line telling whether arbitrage is possible or not in the format "Case case: Yes" respectively "Case case: No".
样例输入
3
USDollar
BritishPound
FrenchFranc
3
USDollar 0.5 BritishPound
BritishPound 10.0 FrenchFranc
FrenchFranc 0.21 USDollar 3
USDollar
BritishPound
FrenchFranc
6
USDollar 0.5 BritishPound
USDollar 4.9 FrenchFranc
BritishPound 10.0 FrenchFranc
BritishPound 1.99 USDollar
FrenchFranc 0.09 BritishPound
FrenchFranc 0.19 USDollar 0
样例输出
Case 1: Yes
Case 2: No
来源
NKOJ or 1996/97 Ulm Internal Contest
上传者
苗栋栋

题意:给出一些货币和货币之间的兑换比率,问是否可以使某种货币经过一些列兑换之后,货币值增加。举例说就是1美元经过一些兑换之后,超过1美元。可以输出Yes,否则输出No。

AC代码:

 #include <vector>
#include <map>
#include <set>
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <string>
#include <cstring>
#include <queue>
using namespace std;
#define INF 0x3f3f3f3f
#define MAX 111 double mp[MAX][MAX];
int n,m; void floyd()
{
for(int k=; k<=n; k++)
for(int i=; i<=n; i++)
for(int j=; j<=n; j++)
if(mp[i][j]< mp[i][k]*mp[k][j])
mp[i][j]=mp[i][k]*mp[k][j];
} void init()
{
for(int i=; i<=n; i++){
for(int j=; j<=n; j++){
if(i==j)
mp[i][j]=;
else
mp[i][j]=;
}
}
} int main()
{
int sum=;
double rate;
char a[],b[],c[];
while(~scanf("%d",&n)&&n){
init();
map<string,int> mmp;
for(int i=; i<=n; i++){
scanf("%s",a);
mmp[a]=i;
}
scanf("%d",&m);
for(int i=; i<=m; i++){
scanf("%s%lf%s",b,&rate,&c);
int x=mmp[b];
int y=mmp[c];
mp[x][y]=rate;
//printf("%d\n",mp[x][y]);
}
floyd();
int flag=;
for(int i=; i<=n; i++){
//printf("%d\n",mp[i][i]);
if(mp[i][i]>){
flag=;
break;
}
}
printf("Case %d: ",++sum);
printf("%s\n",flag ? "Yes" : "No");
}
}

SPFA:

 #include <vector>
#include <map>
#include <set>
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <string>
#include <cstring>
#include <queue>
using namespace std;
#define INF 0x3f3f3f3f
#define MAX 111 int n, m;
double dis[MAX], mp[MAX][MAX];
struct node
{
char name[];
}a[MAX]; int find(char *s)
{
for(int i = ; i < n; i++)
if(strcmp(a[i].name, s) == )
return i;
} int SPFA(int p)
{
queue<int> q;
bool vis[MAX];
memset(dis,,sizeof(dis));
memset(vis, , sizeof(vis));
while(!q.empty())
q.pop();
dis[p] = ;
vis[p] = ;
q.push(p);
while(!q.empty())
{
int x = q.front();
q.pop();
vis[x] = false;
for(int i = ; i < n; i++)
{
if(dis[i] < dis[x] * mp[x][i])
{
dis[i] = dis[x] * mp[x][i];
if(dis[p] > 1.0)
return ;
if(!vis[i])
{
vis[i] = true;
q.push(i);
}
}
}
}
return ;
} int main()
{
int i, j, cas = ;
char s1[], s2[];
double s;
while(~scanf("%d",&n) && n)
{
for(i = ; i < n; i++)
{
for(j = ; j < n; j++)
{
if(i == j)
mp[i][j] = ;
else
mp[i][j] = ;
}
}
for(i = ; i < n; i++)
scanf("%s",a[i].name);
scanf("%d",&m);
for(i = ; i < m; i++)
{
scanf("%s%lf%s",s1, &s, s2);
int u = find(s1), v = find(s2);
mp[u][v] = s;
}
int flag = ;
for(i = ; i < n; i++)
{
if(SPFA(i) == )
{
flag = ;
break;
}
}
printf("Case %d: ",++cas);
printf("%s\n", flag ? "Yes" : "No");
}
return ;
}

Bellman_Ford代码(hdu  可过):

 #include <vector>
#include <map>
#include <set>
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <string>
#include <cstring>
#include <queue>
using namespace std;
#define INF 0x3f3f3f3f
#define MAX 111 struct node
{
int x,y;
double rate;
}e[MAX]; int n,m,v;
bool flag;
double dis[MAX]; bool Bellman_Ford(int p)
{
memset(dis,,sizeof(dis));
dis[p]=;
for(int j=; j<n; j++)
for(int i=; i<v; i++)
{
if(dis[e[i].y] < dis[e[i].x] * e[i].rate)
dis[e[i].y] = dis[e[i].x] * e[i].rate;
}
//for(int i=0; i<v; i++)
// printf("%d\n",dis[e[i].y]);
for(int i = ; i<v; i++)
if(dis[e[i].y] < dis[e[i].x] * e[i].rate)
return true;
return false;
} int main()
{
int sum=;
char a[], b[], c[];
double rate;
while(~scanf("%d",&n)&&n){
v=;
map<string,int> mp;
for(int i=; i<=n; i++){
scanf("%s",a);
mp[a]=i;
}
scanf("%d",&m);
for(int i=; i<=m; i++){
scanf("%s%lf%s",b,&rate,c);
int x=mp[b];
int y=mp[c];
e[v].x=x;
e[v].y=y;
e[v++].rate=rate;
}
flag=Bellman_Ford();
if (flag)
printf("Case %d: Yes\n",++sum);
else
printf("Case %d: No\n", ++sum);
}
}

Nyoj Arbitrage(Floyd or spfa or Bellman-Ford)的更多相关文章

  1. ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)

    两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...

  2. poj1860 bellman—ford队列优化 Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 799 ...

  3. uva 558 - Wormholes(Bellman Ford判断负环)

    题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...

  4. Bellman—Ford算法思想

    ---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...

  5. Bellman - Ford 算法解决最短路径问题

    Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...

  6. 一个人的旅行(floyd+dijskra+SPFA+Bellman)

    一个人的旅行 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  7. POJ 2240 Arbitrage (Bellman Ford判正环)

    Arbitrage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:27167   Accepted: 11440 Descri ...

  8. 图论算法——最短路径Dijkstra,Floyd,Bellman Ford

    算法名称 适用范围 算法过程 Dijkstra 无负权 从s开始,选择尚未完成的点中,distance最小的点,对其所有边进行松弛:直到所有结点都已完成 Bellman-Ford 可用有负权 依次对所 ...

  9. 最短路知识点总结(Dijkstra,Floyd,SPFA,Bellman-Ford)

    Dijkstra算法: 解决的问题: 带权重的有向图上单源最短路径问题.且权重都为非负值.如果采用的实现方法合适,Dijkstra运行时间要低于Bellman-Ford算法. 思路: 如果存在一条从i ...

随机推荐

  1. RH033读书笔记(2)-Lab 3 Getting Help with Commands

    Lab 3 Getting Help with Commands Sequence 1: Using the Help Tools 1. man -f keyword whatis keyword l ...

  2. 于Heroku平台部署maven webapp(java web)工程

    眼下,需要Heroku上述部署java web工程,该项目必须使用maven管理 一:新maven webapp工程 编者pom.xml档,增加下面的配置为例, <project xmlns=& ...

  3. Eclipse——热键&amp;Help

    版权声明:本文博主原创文章.博客,未经同意不得转载.

  4. SecureCRT 6.7.1 RI和谐 皴 补丁 方法

    它之前被使用SecureCRT 6.5.3 版本号,咋看和谐补丁,即使中国版本也可(现在才发现SecureCRT.6.2.0) 可是换为 6.7.1 后就怎么也注冊不了了.. 没办法试了各种办法: 先 ...

  5. servlet(jsp)中的重定向和转发

    servlet(jsp)中的重定向和转发 由一个servlet(jsp)从内部转向还有一个servlet(jsp)有两种方式:转发和重定向. 转发:是由一个web组件(servlet)将未完毕的处理交 ...

  6. ios 多线程开发(二)线程管理

    线程管理 iOS和OS X中每一个进程(或程序)由一个或多个线程组成.程序由一个运行main方法的线程开始,中间可以产生其他线程来执行一些指定的功能. 当程序产生一个新线程后,这个线程在程序进程空间内 ...

  7. struts开发步骤

    说来惭愧.这是一个简单的struts折腾了很长一段时间,几乎相同的时间量就花了三天时间来解决.下面的步骤总结一下我开发:(我使用的是MyEclipse); 1.新建一个Exercise3的web Pr ...

  8. GitLab 安装配置笔记(转)

    GitLab的安装方式 GitLab的两种安装方法: 编译安装 优点:可定制性强.数据库既可以选择MySQL,也可以选择PostgreSQL;服务器既可以选择Apache,也可以选择Nginx. 缺点 ...

  9. 【Java技术位】——代理模式及其事务包

    背景 项目中我们会遇到这种情况:在几个方法中增加同样的代码,这些代码是与业务无关的,而且以后有可能因为考虑不周或需求变动再或者是其它原因,我们须要对他们进行逐一进行修改.举个详细的样例,比方程序中的日 ...

  10. cocos2d-x -- 渠道SDK【棱镜】接入(1)

    棱镜SDK简单介绍 若想让游戏上线,渠道接入步骤是不可缺少的,为了避免一对一接入渠道问题,我选择了棱镜SDK,由于棱镜是游戏与渠道SDK的中间层,为CP厂商屏蔽各个渠道SDK之间的差异,整个接入过程, ...