描述
Arbitrage is the use of discrepancies in currency exchange rates to transform one unit of a currency into more than one unit of the same currency. For example, suppose that 1 US Dollar buys 0.5 British pound, 1 British pound buys 10.0 French francs, and 1 French franc buys 0.21 US dollar. Then, by converting currencies, a clever trader can start with 1 US dollar and buy 0.5 * 10.0 * 0.21 = 1.05 US dollars, making a profit of 5 percent.

Your job is to write a program that takes a list of currency exchange rates as input and then determines whether arbitrage is possible or not.

 
输入
The input file will contain one or more test cases. Om the first line of each test case there is an integer n (1<=n<=30), representing the number of different currencies. The next n lines each contain the name of one currency. Within a name no spaces will appear. The next line contains one integer m, representing the length of the table to follow. The last m lines each contain the name ci of a source currency, a real number rij which represents the exchange rate from ci to cj and a name cj of the destination currency. Exchanges which do not appear in the table are impossible.
Test cases are separated from each other by a blank line. Input is terminated by a value of zero (0) for n.
输出
For each test case, print one line telling whether arbitrage is possible or not in the format "Case case: Yes" respectively "Case case: No".
样例输入
3
USDollar
BritishPound
FrenchFranc
3
USDollar 0.5 BritishPound
BritishPound 10.0 FrenchFranc
FrenchFranc 0.21 USDollar 3
USDollar
BritishPound
FrenchFranc
6
USDollar 0.5 BritishPound
USDollar 4.9 FrenchFranc
BritishPound 10.0 FrenchFranc
BritishPound 1.99 USDollar
FrenchFranc 0.09 BritishPound
FrenchFranc 0.19 USDollar 0
样例输出
Case 1: Yes
Case 2: No
来源
NKOJ or 1996/97 Ulm Internal Contest
上传者
苗栋栋

题意:给出一些货币和货币之间的兑换比率,问是否可以使某种货币经过一些列兑换之后,货币值增加。举例说就是1美元经过一些兑换之后,超过1美元。可以输出Yes,否则输出No。

AC代码:

 #include <vector>
#include <map>
#include <set>
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <string>
#include <cstring>
#include <queue>
using namespace std;
#define INF 0x3f3f3f3f
#define MAX 111 double mp[MAX][MAX];
int n,m; void floyd()
{
for(int k=; k<=n; k++)
for(int i=; i<=n; i++)
for(int j=; j<=n; j++)
if(mp[i][j]< mp[i][k]*mp[k][j])
mp[i][j]=mp[i][k]*mp[k][j];
} void init()
{
for(int i=; i<=n; i++){
for(int j=; j<=n; j++){
if(i==j)
mp[i][j]=;
else
mp[i][j]=;
}
}
} int main()
{
int sum=;
double rate;
char a[],b[],c[];
while(~scanf("%d",&n)&&n){
init();
map<string,int> mmp;
for(int i=; i<=n; i++){
scanf("%s",a);
mmp[a]=i;
}
scanf("%d",&m);
for(int i=; i<=m; i++){
scanf("%s%lf%s",b,&rate,&c);
int x=mmp[b];
int y=mmp[c];
mp[x][y]=rate;
//printf("%d\n",mp[x][y]);
}
floyd();
int flag=;
for(int i=; i<=n; i++){
//printf("%d\n",mp[i][i]);
if(mp[i][i]>){
flag=;
break;
}
}
printf("Case %d: ",++sum);
printf("%s\n",flag ? "Yes" : "No");
}
}

SPFA:

 #include <vector>
#include <map>
#include <set>
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <string>
#include <cstring>
#include <queue>
using namespace std;
#define INF 0x3f3f3f3f
#define MAX 111 int n, m;
double dis[MAX], mp[MAX][MAX];
struct node
{
char name[];
}a[MAX]; int find(char *s)
{
for(int i = ; i < n; i++)
if(strcmp(a[i].name, s) == )
return i;
} int SPFA(int p)
{
queue<int> q;
bool vis[MAX];
memset(dis,,sizeof(dis));
memset(vis, , sizeof(vis));
while(!q.empty())
q.pop();
dis[p] = ;
vis[p] = ;
q.push(p);
while(!q.empty())
{
int x = q.front();
q.pop();
vis[x] = false;
for(int i = ; i < n; i++)
{
if(dis[i] < dis[x] * mp[x][i])
{
dis[i] = dis[x] * mp[x][i];
if(dis[p] > 1.0)
return ;
if(!vis[i])
{
vis[i] = true;
q.push(i);
}
}
}
}
return ;
} int main()
{
int i, j, cas = ;
char s1[], s2[];
double s;
while(~scanf("%d",&n) && n)
{
for(i = ; i < n; i++)
{
for(j = ; j < n; j++)
{
if(i == j)
mp[i][j] = ;
else
mp[i][j] = ;
}
}
for(i = ; i < n; i++)
scanf("%s",a[i].name);
scanf("%d",&m);
for(i = ; i < m; i++)
{
scanf("%s%lf%s",s1, &s, s2);
int u = find(s1), v = find(s2);
mp[u][v] = s;
}
int flag = ;
for(i = ; i < n; i++)
{
if(SPFA(i) == )
{
flag = ;
break;
}
}
printf("Case %d: ",++cas);
printf("%s\n", flag ? "Yes" : "No");
}
return ;
}

Bellman_Ford代码(hdu  可过):

 #include <vector>
#include <map>
#include <set>
#include <algorithm>
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <string>
#include <cstring>
#include <queue>
using namespace std;
#define INF 0x3f3f3f3f
#define MAX 111 struct node
{
int x,y;
double rate;
}e[MAX]; int n,m,v;
bool flag;
double dis[MAX]; bool Bellman_Ford(int p)
{
memset(dis,,sizeof(dis));
dis[p]=;
for(int j=; j<n; j++)
for(int i=; i<v; i++)
{
if(dis[e[i].y] < dis[e[i].x] * e[i].rate)
dis[e[i].y] = dis[e[i].x] * e[i].rate;
}
//for(int i=0; i<v; i++)
// printf("%d\n",dis[e[i].y]);
for(int i = ; i<v; i++)
if(dis[e[i].y] < dis[e[i].x] * e[i].rate)
return true;
return false;
} int main()
{
int sum=;
char a[], b[], c[];
double rate;
while(~scanf("%d",&n)&&n){
v=;
map<string,int> mp;
for(int i=; i<=n; i++){
scanf("%s",a);
mp[a]=i;
}
scanf("%d",&m);
for(int i=; i<=m; i++){
scanf("%s%lf%s",b,&rate,c);
int x=mp[b];
int y=mp[c];
e[v].x=x;
e[v].y=y;
e[v++].rate=rate;
}
flag=Bellman_Ford();
if (flag)
printf("Case %d: Yes\n",++sum);
else
printf("Case %d: No\n", ++sum);
}
}

Nyoj Arbitrage(Floyd or spfa or Bellman-Ford)的更多相关文章

  1. ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)

    两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...

  2. poj1860 bellman—ford队列优化 Currency Exchange

    Currency Exchange Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 22123   Accepted: 799 ...

  3. uva 558 - Wormholes(Bellman Ford判断负环)

    题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...

  4. Bellman—Ford算法思想

    ---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...

  5. Bellman - Ford 算法解决最短路径问题

    Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...

  6. 一个人的旅行(floyd+dijskra+SPFA+Bellman)

    一个人的旅行 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Subm ...

  7. POJ 2240 Arbitrage (Bellman Ford判正环)

    Arbitrage Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:27167   Accepted: 11440 Descri ...

  8. 图论算法——最短路径Dijkstra,Floyd,Bellman Ford

    算法名称 适用范围 算法过程 Dijkstra 无负权 从s开始,选择尚未完成的点中,distance最小的点,对其所有边进行松弛:直到所有结点都已完成 Bellman-Ford 可用有负权 依次对所 ...

  9. 最短路知识点总结(Dijkstra,Floyd,SPFA,Bellman-Ford)

    Dijkstra算法: 解决的问题: 带权重的有向图上单源最短路径问题.且权重都为非负值.如果采用的实现方法合适,Dijkstra运行时间要低于Bellman-Ford算法. 思路: 如果存在一条从i ...

随机推荐

  1. svn加入新的文件夹

    方法一: 1.在远程server上生成新的文件夹 svn mkdir http://svn.xxx.com/svn/mobile/strategy/assistant/branches/talk -m ...

  2. iframe页面控制父页面跳转

    <script> window.onload=function(){   window.location.href="http://www.baidu.com";    ...

  3. 顺序容器的insert使用方法

    #include <iostream> #include <algorithm> #include <vector> #include <string> ...

  4. 【从翻译mos文章】不再用par file如果是,export or import 包含大写和小写表名称表

    不再用par file如果是,export or import 包含大写和小写表名称表 参考原始: How to Export or Import Case Sensitive Tables With ...

  5. C#和C++下数据类型对应表

    /C++中的DLL函数原型为//extern "C" __declspec(dllexport) bool 方法名一(const char* 变量名1, unsigned char ...

  6. ListView 实现多选/无线电

    ListView本身与无线电.多选模式.由listview.setChoiceMode设置: listview.setChoiceMode(ListView.CHOICE_MODE_MULTIPLE) ...

  7. JAVA设计模式(08):结构化-飞锤(Flyweight)

    当前咱们国家正在大力倡导构建和谐社会,当中一个非常重要的组成部分就是建设资源节约型社会,"浪费可耻,节俭光荣". 在软件系统中,有时候也会存在资源浪费的情况,比如在计算机内存中存储 ...

  8. 一个用于每一天JavaScript示例-使用缓存计算(memoization)为了提高应用程序性能

    <!DOCTYPE html> <html> <head> <meta http-equiv="Content-Type" content ...

  9. python django模型内部类meta详细解释

    Django 模型类的Meta是一个内部类,它用于定义一些Django模型类的行为特性.下面对此作一总结: abstract      这个属性是定义当前的模型类是不是一个抽象类.所谓抽象类是不会相应 ...

  10. uitextField单词的方法和抖动的限制

    这种方法还可以找到在线. 如下面的详细信息: .h文件 #import <UIKit/UIKit.h> @interface UITextField (LimitLength) /** * ...