题目描述

传说HMH大沙漠中有一个M*N迷宫,里面藏有许多宝物。某天,Dr.Kong找到了迷宫的地图,他发现迷宫内处处有宝物,最珍贵的宝物就藏在右下角,迷宫的进出口在左上角。当然,迷宫中的通路不是平坦的,到处都是陷阱。Dr.Kong决定让他的机器人卡多去探险。

但机器人卡多从左上角走到右下角时,只会向下走或者向右走。从右下角往回走到左上角时,只会向上走或者向左走,而且卡多不走回头路。(即:一个点最多经过一次)。当然卡多顺手也拿走沿路的每个宝物。

Dr.Kong希望他的机器人卡多尽量多地带出宝物。请你编写程序,帮助Dr.Kong计算一下,卡多最多能带出多少宝物。

 

输入

第一行: K 表示有多少组测试数据。 
接下来对每组测试数据:
第1行: M N
第2~M+1行: Ai1 Ai2 ……AiN (i=1,…..,m)

【约束条件】
2≤k≤5 1≤M, N≤50 0≤Aij≤100 (i=1,….,M; j=1,…,N)
所有数据都是整数。 数据之间有一个空格。

 

输出

对于每组测试数据,输出一行:机器人卡多携带出最多价值的宝物数

 

样例输入

2
2 3
0 10 10
10 10 80
3 3
0 3 9
2 8 5
5 7 100

样例输出

120
134

来源

题解(1):  http://www.l-ch.net/26112.html

这道题和以往我们做的dp不同之处就在于 是一去一回

加入只有去 我们可以 用动态规划方程  dp[i][j]=max(dp[i-1][j],dp[i][j-1])+map[i][j].

而这道题去了又回来 我们可以理解为两个人同时从左上角去 不过不走相同的路

如果两个人不走相同的路 那么这两个人必须不在相同的列或者行 又因为 两个人走的步数完全相同

所以我们可以通过一个人走的步数得到另外一个人走的步数

我们可以通过一个四维的数组来保存

于是这个时候的动态规划方程

dp[i][j][k][l]=max(max(dp[i-1][j][k-1][l],dp[i-1][j][k][l-1]),
max(dp[i][j-1][k-1][l],dp[i][j-1][k][l-1]))+map[i][j]+map[k][l];
 
 
题解(2):玉民的思路...三维数组...
 
 
 
代码:
 #include <cstdio>
#include <cmath>
#include <cstring>
#include <string>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iostream>
using namespace std;
#define for0(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define ll long long
#define MOD 1000000007
#define inf 0x3f3f3f3f ll dp[][][];
ll mp[][]; int k,n,m,p,q; int main()
{
int l;
scanf("%d",&k);
while(k--){
scanf("%d%d",&n,&m);
for(int i=; i<=n; i++)
for(int j=; j<=m; j++)
scanf("%lld",&mp[i][j]);
memset(dp,,sizeof(dp));
dp[][][]=mp[][];
for(int l=; l<n+m; l++)
for(int i=; i<=n ;i++)
for(int j=; j<=n; j++){
p=l-i;
q=l-j;
if(p< || q<) break;
if(p>m || q>m) continue;
if(p==q) continue;
dp[l][i][j]=max(max(dp[l-][i-][j],dp[l-][i-][j-]),max(dp[l-][i][j-],dp[l-][i][j]));
//dp[k][i][j]=max(max(dp[k-1][i-1][j],dp[k-1][i-1][j-1]),max(dp[k-1][i][j-1],dp[k-1][i][j]));
dp[l][i][j]+=mp[i][p]+mp[j][q];
//dp[k][i][j]+=map[i][p]+map[j][q];
}
dp[n+m][n][n]=max(max(dp[m+n-][n-][n],dp[m+n-][n-][n-]),max(dp[n+m-][n][n-],dp[n+m-][n][n]));
printf("%lld\n",dp[n+m][n][n]+mp[n][m]);
} }
 

探寻宝藏(双向DP)的更多相关文章

  1. 探寻宝藏 --- 双线DP

    双线DP , 在郑轻的时候 做过 这种双线DP  ,  这是多维DP 应该是比较简单的  但是那个 时间复杂度的优化 始终看不懂 .  先附上代码吧 , 等看懂了再来 , 补充一下 解释  . #in ...

  2. 「BZOJ1924」「SDOI2010」 所驼门王的宝藏 tarjan + dp(DAG 最长路)

    「BZOJ1924」[SDOI2010] 所驼门王的宝藏 tarjan + dp(DAG 最长路) -------------------------------------------------- ...

  3. nyoj 探寻宝藏

    探 寻 宝 藏 时间限制:1000 ms  |  内存限制:65535 KB 难度:5 描述 传说HMH大沙漠中有一个M*N迷宫,里面藏有许多宝物.某天,Dr.Kong找到了迷宫的地图,他发现迷宫内处 ...

  4. [NOIP2017]宝藏 子集DP

    题面:[NOIP2017]宝藏 题面: 首先我们观察到,如果直接DP,因为每次转移的代价受上一个状态到底选了哪些边的影响,因此无法直接转移. 所以我们考虑分层DP,即每次强制现在加入的点的距离为k(可 ...

  5. NYOJ-712 探寻宝藏(第六届河南省程序设计大赛)

    探 寻 宝 藏 时间限制:1000 ms  |  内存限制:65535 KB 难度:5   描述 传说HMH大沙漠中有一个M*N迷宫,里面藏有许多宝物.某天,Dr.Kong找到了迷宫的地图,他发现迷宫 ...

  6. [CodeVs3196]黄金宝藏(DP/极大极小搜索)

    题目大意:给出n(≤500)个数,两个人轮流取数,每次可以从数列左边或者右边取一个数,直到所有的数被取完,两个人都以最优策略取数,求最后两人所得分数. 显然这种类型的博弈题,第一眼就是极大极小搜索+记 ...

  7. nyoj 61-传纸条(一)(双向dp)

    61-传纸条(一) 内存限制:64MB 时间限制:2000ms Special Judge: No accepted:8 submit:37 题目描述: 小渊和小轩是好朋友也是同班同学,他们在一起总有 ...

  8. POJ 1836 Alignment (双向DP)

    Alignment Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 10804   Accepted: 3464 Descri ...

  9. ny712 探寻宝藏 ny61 传纸条(1)

    探 寻 宝 藏 时间限制:1000 ms  |  内存限制:65535 KB 难度:5 描述 传说HMH大沙漠中有一个M*N迷宫,里面藏有许多宝物.某天,Dr.Kong找到了迷宫的地图,他发现迷宫内处 ...

随机推荐

  1. 第3周 区_SQL Server中管理空间的基本单位

    原文:第3周 区_SQL Server中管理空间的基本单位 哇哦,SQL Server性能调优培训已经进入第3周了!同时你已经对SQL Server内核运行机制有了很好的认识.今天我会讲下SQL Se ...

  2. ibatis实战之OR映射

    相对Hibernate等ORM实现而言,ibatis的映射配置更为简洁直接,以下是一个典型的配置文件. <?xml version="1.0" encoding=" ...

  3. CMake入门(二)

    CMake入门(二) 最后更新日期:2014-04-25 by kagula 阅读前提:<CMake入门(一)>.Linux的基本操作 环境: Windows 8.1 64bit英文版.V ...

  4. Windows Azure应用系列:微软的云部署VPN

    本文介绍如何使用OpenVPN微软云计算server既定VPN维修. 过程,如下面: 1.新建Linux或者Ubuntu虚拟机.并设置port.(本文将建立Ubuntu作为演示) 2.利用PuTTY登 ...

  5. DocFX

    微软开源全新的文档生成工具DocFX 微软放弃Sandcastle有些年头了,微软最近开源了全新的文档生成工具DocFX,目前支持C#和VB,类似JSDoc或Sphinx,可以从源代码中提取注释生成文 ...

  6. async And await异步编程活用基础

    原文:async And await异步编程活用基础 好久没写博客了,时隔5个月,奉上一篇精心准备的文章,希望大家能有所收获,对async 和 await 的理解有更深一层的理解. async 和 a ...

  7. iOS_数据库3_sqlite3基本操作

    终于效果图: Sqlite3函数总结  1.打开数据库 int sqlite3_open( const char *filename, // 数据库的文件路径 sqlite3 **ppDb // 数据 ...

  8. [LeetCode145]Binary Tree Postorder Traversal

    题目: Given a list, rotate the list to the right by k places, where k is non-negative. For example:Giv ...

  9. Java读取图像和网络存储

    该公司最近在搞一个Web工程,需要下载网络图片,那么既然恢复了一些最基本的东西.数据传输不同的流,简单,很容易下载网络打破了样品的图片,代码非常easy.贡献给大家! 结论,图片主要就四步: 1:拿到 ...

  10. 面向服务的架构(SOA)

    SOA架构基础概念 面向服务的架构(SOA) 在深入探讨什么是面向服务的架构(SOA)之前,先建立一些基本的概念和术语的基本描述而非严格定义,所以也许有些定义在业内还存留争议,此处暂且忽略. 架构基础 ...