生成函数这个东西太好用了~

code:

#include <bits/stdc++.h>
#define ll long long
#define setIO(s) freopen(s".in","r",stdin)
using namespace std;
const int mod=998244353,G=3,N=1000003;
int A[N],B[N],F[N],g[N],inv2,C[N],D[N],tmp1[N];
inline int qpow(int x,int y)
{
int tmp=1;
for(;y;y>>=1,x=(ll)x*x%mod) if(y&1) tmp=1ll*tmp*x%mod;
return tmp;
}
inline int INV(int x) { return qpow(x,mod-2); }
void NTT(int *a,int len,int flag)
{
int i,j,k,mid;
for(i=k=0;i<len;++i)
{
if(i>k) swap(a[i],a[k]);
for(j=len>>1;(k^=j)<j;j>>=1);
}
for(mid=1;mid<len;mid<<=1)
{
int wn=qpow(G,(mod-1)/(mid<<1));
if(flag==-1) wn=INV(wn);
for(i=0;i<len;i+=mid<<1)
{
int w=1;
for(j=0;j<mid;++j)
{
int x=a[i+j], y=1ll*w*a[i+j+mid]%mod;
a[i+j]=1ll*(x+y)%mod, a[i+j+mid]=1ll*(x-y+mod)%mod;
w=1ll*w*wn%mod;
}
}
}
if(flag==-1)
{
int rev=INV(len);
for(i=0;i<len;++i) a[i]=1ll*a[i]*rev%mod;
}
}
void getinv(int *a,int *b,int len)
{
if(len==1) { b[0]=INV(a[0]); return; }
getinv(a,b,len>>1);
int i,j;
for(i=0;i<(len<<1);++i) C[i]=D[i]=0;
for(i=0;i<len;++i) C[i]=a[i], D[i]=b[i];
NTT(C,len<<1,1);
NTT(D,len<<1,1);
for(i=0;i<(len<<1);++i) C[i]=1ll*C[i]*D[i]%mod*D[i]%mod;
NTT(C,len<<1,-1);
for(i=0;i<len;++i) b[i]=((b[i]<<1)%mod-C[i]+mod)%mod;
}
void getsqrt(int *a,int *b,int len)
{
if(len==1) { b[0]=1; return; }
getsqrt(a,b,len>>1);
int i,j;
for(i=0;i<(len<<1);++i) A[i]=B[i]=0;
getinv(b,B,len);
for(i=0;i<len;++i) A[i]=a[i];
NTT(A,len<<1,1);
NTT(B,len<<1,1);
for(i=0;i<(len<<1);++i) A[i]=1ll*A[i]*B[i]%mod;
NTT(A,len<<1,-1);
for(i=0;i<len;++i) b[i]=1ll*(b[i]+A[i])%mod*inv2%mod;
}
int main()
{
// setIO("input");
inv2=INV(2);
int i,j,n,m,limit;
scanf("%d%d",&n,&m);
for(i=1;i<=n;++i)
{
int x;
scanf("%d",&x);
if(x<=m) g[x]=1;
}
g[0]=1;
for(i=1;i<=m;++i) g[i]=mod-1ll*4*g[i];
for(limit=1;limit<=m;limit<<=1);
getsqrt(g,tmp1,limit);
tmp1[0]=(tmp1[0]+1)%mod;
getinv(tmp1,F,limit);
for(i=1;i<=m;++i) printf("%d\n",1ll*2*F[i]%mod);
return 0;
}

  

BZOJ 3625:小朋友和二叉树 多项式开根+多项式求逆+生成函数的更多相关文章

  1. [BZOJ3625][CF438E]小朋友和二叉树 (多项式开根,求逆)

    题面 题解 设多项式的第a项为权值和为a的二叉树个数,多项式的第a项表示是否为真,即 则,所以F是三个多项式的卷积,其中包括自己: ,1是F的常数项,即. 我们发现这是一个一元二次方程,可以求出,因为 ...

  2. [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆)

    [BZOJ 3625] [Codeforces 438E] 小朋友的二叉树 (DP+生成函数+多项式开根+多项式求逆) 题面 一棵二叉树的所有点的点权都是给定的集合中的一个数. 让你求出1到m中所有权 ...

  3. 【BZOJ3625】【CF438E】小朋友和二叉树 NTT 生成函数 多项式开根 多项式求逆

    题目大意 考虑一个含有\(n\)个互异正整数的序列\(c_1,c_2,\ldots ,c_n\).如果一棵带点权的有根二叉树满足其所有顶点的权值都在集合\(\{c_1,c_2,\ldots ,c_n\ ...

  4. CF438E The Child and Binary Tree(生成函数+多项式开根+多项式求逆)

    传送门 可以……这很多项式开根模板……而且也完全不知道大佬们怎么把这题的式子推出来的…… 首先,这题需要多项式开根和多项式求逆.多项式求逆看这里->这里,这里讲一讲多项式开根 多项式开方:已知多 ...

  5. bzoj 3625小朋友和二叉树 多项式求逆+多项式开根 好题

    题目大意 给定n种权值 给定m \(F_i表示权值和为i的二叉树个数\) 求\(F_1,F_2...F_m\) 分析 安利博客 \(F_d=F_L*F_R*C_{mid},L+mid+R=d\) \( ...

  6. CF 438 E & bzoj 3625 小朋友和二叉树 —— 多项式开方

    题目:http://codeforces.com/contest/438/problem/E https://www.lydsy.com/JudgeOnline/problem.php?id=3625 ...

  7. cf438E. The Child and Binary Tree(生成函数 多项式开根 多项式求逆)

    题意 链接 Sol 生成函数博大精深Orz 我们设\(f(i)\)表示权值为\(i\)的二叉树数量,转移的时候可以枚举一下根节点 \(f(n) = \sum_{w \in C_1 \dots C_n} ...

  8. 洛谷P5205 【模板】多项式开根(多项式sqrt)

    题意 题目链接 Sol 这个就很没意思了 求个ln,然后系数除以2,然后exp回去. #include<bits/stdc++.h> #define Pair pair<int, i ...

  9. BZOJ 3625 [Codeforces Round #250]小朋友和二叉树 ——NTT 多项式求逆 多项式开根

    生成函数又有奇妙的性质. $F(x)=C(x)*F(x)*F(x)+1$ 然后大力解方程,得到一个带根号的式子. 多项式开根有解只与常数项有关. 发现两个解只有一个是成立的. 然后多项式开根.求逆. ...

随机推荐

  1. PHP生成随机单词

    class GenRandWords { private static $_alphas = [ 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', ' ...

  2. 在 centos 上安装 virutalbox

    目录 简介 centos 6.x 安装 virtual box Step 1 – Add Required Yum Repositories Step 2 – Install Required Pac ...

  3. React 了解学习

    1.nodejs安装程序https://nodejs.org/en/download/ create-react-app 类似 vs2017开发工具,集成了webpack 打包发布,loader和默认 ...

  4. showModalDialog的使用方法

    基本介绍: showModalDialog()         (IE 4+ 支持) showModelessDialog()      (IE 5+ 支持) window.showModalDial ...

  5. 【hbase】hbase-2.2.1配置独立的zookeeper的安装与测试

    下载hbase-2.2.1-bin.tar.gz并执行安装命令: [hadoop@hadoop01 ~]$ tar -zxvf hbase--bin.tar.gz 查看安装目录: [hadoop@ha ...

  6. 码云和Git使用说明

    Git下载网站: https://git-scm.com/download/win 码云网站     :https://gitee.com 下载Git,并一路下一步安装. 鼠标空白处右键点击,出现两个 ...

  7. GAE相关

    Google App Engine for Java是可以在Google托管服务器基础架构上托管和运行用户Web应用程序.出于安全原因,这些应用程序在沙盒环境中执行. 沙箱本身由两层组成.第一层是GA ...

  8. 从零开始配置MacBook Pro

    购买macbook, 是因为它的效率性.由于我第一次使用macbook,所以按照我开发的习惯和参照了其他人的文章进行配置我的个人mac,希望我的设置对你们也有所帮助 1.基本配置 查找我的Mac 系统 ...

  9. Codeforces C. A Simple Task(状态压缩dp)

    题目描述:  A Simple Task time limit per test 2 seconds memory limit per test 256 megabytes input standar ...

  10. JS之try..catch...

    try 测试代码块的错误. catch 语句处理错误. throw 创建并跑出错误. try { //在这里运行代码 抛出错误 }catch(err){ //在这里处理错误 } 实例: <p&g ...