There are a total of n courses you have to take, labeled from 0 to n-1.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

Example 1:

Input: 2, [[1,0]]
Output: true
Explanation: There are a total of 2 courses to take.
  To take course 1 you should have finished course 0. So it is possible.

Example 2:

Input: 2, [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take.
  To take course 1 you should have finished course 0, and to take course 0 you should
  also have finished course 1. So it is impossible.

Note:

  1. The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
  2. You may assume that there are no duplicate edges in the input prerequisites.
Hints:
  1. This problem is equivalent to finding if a cycle exists in a directed graph. If a cycle exists, no topological ordering exists and therefore it will be impossible to take all courses.
  2. There are several ways to represent a graph. For example, the input prerequisites is a graph represented by a list of edges. Is this graph representation appropriate?
  3. Topological Sort via DFS - A great video tutorial (21 minutes) on Coursera explaining the basic concepts of Topological Sort.
  4. Topological sort could also be done via BFS.

这道课程清单的问题对于我们学生来说应该不陌生,因为在选课的时候经常会遇到想选某一门课程,发现选它之前必须先上了哪些课程,这道题给了很多提示,第一条就告诉了这道题的本质就是在有向图中检测环。 LeetCode 中关于图的题很少,有向图的仅此一道,还有一道关于无向图的题是 Clone Graph。个人认为图这种数据结构相比于树啊,链表啊什么的要更为复杂一些,尤其是有向图,很麻烦。第二条提示是在讲如何来表示一个有向图,可以用边来表示,边是由两个端点组成的,用两个点来表示边。第三第四条提示揭示了此题有两种解法,DFS 和 BFS 都可以解此题。先来看 BFS 的解法,定义二维数组 graph 来表示这个有向图,一维数组 in 来表示每个顶点的入度。开始先根据输入来建立这个有向图,并将入度数组也初始化好。然后定义一个 queue 变量,将所有入度为0的点放入队列中,然后开始遍历队列,从 graph 里遍历其连接的点,每到达一个新节点,将其入度减一,如果此时该点入度为0,则放入队列末尾。直到遍历完队列中所有的值,若此时还有节点的入度不为0,则说明环存在,返回 false,反之则返回 true。代码如下:

解法一:

class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> graph(numCourses, vector<int>());
vector<int> in(numCourses);
for (auto a : prerequisites) {
graph[a[]].push_back(a[]);
++in[a[]];
}
queue<int> q;
for (int i = ; i < numCourses; ++i) {
if (in[i] == ) q.push(i);
}
while (!q.empty()) {
int t = q.front(); q.pop();
for (auto a : graph[t]) {
--in[a];
if (in[a] == ) q.push(a);
}
}
for (int i = ; i < numCourses; ++i) {
if (in[i] != ) return false;
}
return true;
}
};

下面来看 DFS 的解法,也需要建立有向图,还是用二维数组来建立,和 BFS 不同的是,像现在需要一个一维数组 visit 来记录访问状态,这里有三种状态,0表示还未访问过,1表示已经访问了,-1 表示有冲突。大体思路是,先建立好有向图,然后从第一个门课开始,找其可构成哪门课,暂时将当前课程标记为已访问,然后对新得到的课程调用 DFS 递归,直到出现新的课程已经访问过了,则返回 false,没有冲突的话返回 true,然后把标记为已访问的课程改为未访问。代码如下:

解法二:

class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> graph(numCourses, vector<int>());
vector<int> visit(numCourses);
for (auto a : prerequisites) {
graph[a[]].push_back(a[]);
}
for (int i = ; i < numCourses; ++i) {
if (!canFinishDFS(graph, visit, i)) return false;
}
return true;
}
bool canFinishDFS(vector<vector<int>>& graph, vector<int>& visit, int i) {
if (visit[i] == -) return false;
if (visit[i] == ) return true;
visit[i] = -;
for (auto a : graph[i]) {
if (!canFinishDFS(graph, visit, a)) return false;
}
visit[i] = ;
return true;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/207

类似题目:

Minimum Height Trees

Course Schedule II

Course Schedule III

Graph Valid Tree

参考资料:

https://leetcode.com/problems/course-schedule/

https://leetcode.com/problems/course-schedule/discuss/58524/Java-DFS-and-BFS-solution

https://leetcode.com/problems/course-schedule/discuss/58516/Easy-BFS-Topological-sort-Java

https://leetcode.com/problems/course-schedule/discuss/162743/JavaC%2B%2BPython-BFS-Topological-Sorting-O(N-%2B-E)

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 207. Course Schedule 课程清单的更多相关文章

  1. [LeetCode] 207. Course Schedule 课程安排

    There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prer ...

  2. [LeetCode] Course Schedule 课程清单

    There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prer ...

  3. LN : leetcode 207 Course Schedule

    lc 207 Course Schedule 207 Course Schedule There are a total of n courses you have to take, labeled ...

  4. LeetCode - 207. Course Schedule

    207. Course Schedule Problem's Link ---------------------------------------------------------------- ...

  5. Java for LeetCode 207 Course Schedule【Medium】

    There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prer ...

  6. [LeetCode] 207. Course Schedule 课程表

    题目: 分析: 这是一道典型的拓扑排序问题.那么何为拓扑排序? 拓扑排序: 有三件事情A,B,C要完成,A随时可以完成,但B和C只有A完成之后才可完成,那么拓扑排序可以为A>B>C或A&g ...

  7. [leetcode]207. Course Schedule课程表

    在一个有向图中,每次找到一个没有前驱节点的节点(也就是入度为0的节点),然后把它指向其他节点的边都去掉,重复这个过程(BFS),直到所有节点已被找到,或者没有符合条件的节点(如果图中有环存在). /* ...

  8. (medium)LeetCode 207.Course Schedule

    There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prer ...

  9. LeetCode 207. Course Schedule(拓扑排序)

    题目 There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have p ...

随机推荐

  1. 利用Python爬虫刷店铺微博等访问量最简单有效教程

    一.安装必要插件 测试环境:Windows 10 + Python 3.7.0 (1)安装Selenium pip install selenium (2)安装Requests pip install ...

  2. 按照官网的升级完socket.io报错Manager is being released。

    查阅了很多资料和英文官网自己也提出了一些问题,估计官网以前有该类的问题历史,懒得回复. 终于功夫不负有心人原因竟然是:你的manager被释放了. you need to make sure the ...

  3. AngleSharp 实战(03)之遍历内部子元素

    文档地址:https://anglesharp.github.io/docs/Examples.html 直接贴代码了: using System; using System.Linq; using ...

  4. OpenGL入门1.2:渲染管线简介,画三角形

    每一个小步骤的源码都放在了Github 的内容为插入注释,可以先跳过 图形渲染管线简介 在OpenGL的世界里,任何事物是处于3D空间中的,而屏幕和窗口显示的却是2D,所以OpenGL干的事情基本就是 ...

  5. C#,WPF,DataGrid,Excel,导出

    private void btnExport_Click(object sender, RoutedEventArgs e) { System.Diagnostics.Stopwatch sw = n ...

  6. annyconnect掉线之后重新链接

    sudo service vpnagentd restart /opt/cisco/anyconnect/bin/vpnui 重启服务+重新登录 deepin的优点之一是它的程序不会安装到各个角落里, ...

  7. SpringBoot+vue整合websocket

    0.引言 这里我先说下,网上对于websocket的解释有一堆不懂自己查,我这就不做原理解释,只上代码. 1.SpringBoot引入websocket maven 依赖 <dependency ...

  8. vue学习指南:第九篇(详细) - Vue的 Slot-插槽

    Slot  v-slot 插槽元素 浏览器在解析时候首先把它当作标签来解析,只有遇到不认识的就不管了,直接跳过,当你发现是组件,在以组件形式解析. 使用插槽的好处? 比如一个网站 分布顶部都是一样的, ...

  9. linux下oracle无法删除用户

    Oracle删除用户的提示无法删除当前已连接用户.且无法kill掉用户进程的两种解决方法如下: 1.先锁定用户.然后查询进程号,最后删除对应的进程.在删除对应的用户 SQL>alter user ...

  10. Django框架 --序列化组件(serializer)

    一 .Django自带序列化组件 Django内置的serializers(把对象序列化成json字符串) from django.core import serializers from djang ...