There are a total of n courses you have to take, labeled from 0 to n-1.

Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]

Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?

Example 1:

Input: 2, [[1,0]]
Output: true
Explanation: There are a total of 2 courses to take.
  To take course 1 you should have finished course 0. So it is possible.

Example 2:

Input: 2, [[1,0],[0,1]]
Output: false
Explanation: There are a total of 2 courses to take.
  To take course 1 you should have finished course 0, and to take course 0 you should
  also have finished course 1. So it is impossible.

Note:

  1. The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
  2. You may assume that there are no duplicate edges in the input prerequisites.
Hints:
  1. This problem is equivalent to finding if a cycle exists in a directed graph. If a cycle exists, no topological ordering exists and therefore it will be impossible to take all courses.
  2. There are several ways to represent a graph. For example, the input prerequisites is a graph represented by a list of edges. Is this graph representation appropriate?
  3. Topological Sort via DFS - A great video tutorial (21 minutes) on Coursera explaining the basic concepts of Topological Sort.
  4. Topological sort could also be done via BFS.

这道课程清单的问题对于我们学生来说应该不陌生,因为在选课的时候经常会遇到想选某一门课程,发现选它之前必须先上了哪些课程,这道题给了很多提示,第一条就告诉了这道题的本质就是在有向图中检测环。 LeetCode 中关于图的题很少,有向图的仅此一道,还有一道关于无向图的题是 Clone Graph。个人认为图这种数据结构相比于树啊,链表啊什么的要更为复杂一些,尤其是有向图,很麻烦。第二条提示是在讲如何来表示一个有向图,可以用边来表示,边是由两个端点组成的,用两个点来表示边。第三第四条提示揭示了此题有两种解法,DFS 和 BFS 都可以解此题。先来看 BFS 的解法,定义二维数组 graph 来表示这个有向图,一维数组 in 来表示每个顶点的入度。开始先根据输入来建立这个有向图,并将入度数组也初始化好。然后定义一个 queue 变量,将所有入度为0的点放入队列中,然后开始遍历队列,从 graph 里遍历其连接的点,每到达一个新节点,将其入度减一,如果此时该点入度为0,则放入队列末尾。直到遍历完队列中所有的值,若此时还有节点的入度不为0,则说明环存在,返回 false,反之则返回 true。代码如下:

解法一:

class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> graph(numCourses, vector<int>());
vector<int> in(numCourses);
for (auto a : prerequisites) {
graph[a[]].push_back(a[]);
++in[a[]];
}
queue<int> q;
for (int i = ; i < numCourses; ++i) {
if (in[i] == ) q.push(i);
}
while (!q.empty()) {
int t = q.front(); q.pop();
for (auto a : graph[t]) {
--in[a];
if (in[a] == ) q.push(a);
}
}
for (int i = ; i < numCourses; ++i) {
if (in[i] != ) return false;
}
return true;
}
};

下面来看 DFS 的解法,也需要建立有向图,还是用二维数组来建立,和 BFS 不同的是,像现在需要一个一维数组 visit 来记录访问状态,这里有三种状态,0表示还未访问过,1表示已经访问了,-1 表示有冲突。大体思路是,先建立好有向图,然后从第一个门课开始,找其可构成哪门课,暂时将当前课程标记为已访问,然后对新得到的课程调用 DFS 递归,直到出现新的课程已经访问过了,则返回 false,没有冲突的话返回 true,然后把标记为已访问的课程改为未访问。代码如下:

解法二:

class Solution {
public:
bool canFinish(int numCourses, vector<vector<int>>& prerequisites) {
vector<vector<int>> graph(numCourses, vector<int>());
vector<int> visit(numCourses);
for (auto a : prerequisites) {
graph[a[]].push_back(a[]);
}
for (int i = ; i < numCourses; ++i) {
if (!canFinishDFS(graph, visit, i)) return false;
}
return true;
}
bool canFinishDFS(vector<vector<int>>& graph, vector<int>& visit, int i) {
if (visit[i] == -) return false;
if (visit[i] == ) return true;
visit[i] = -;
for (auto a : graph[i]) {
if (!canFinishDFS(graph, visit, a)) return false;
}
visit[i] = ;
return true;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/207

类似题目:

Minimum Height Trees

Course Schedule II

Course Schedule III

Graph Valid Tree

参考资料:

https://leetcode.com/problems/course-schedule/

https://leetcode.com/problems/course-schedule/discuss/58524/Java-DFS-and-BFS-solution

https://leetcode.com/problems/course-schedule/discuss/58516/Easy-BFS-Topological-sort-Java

https://leetcode.com/problems/course-schedule/discuss/162743/JavaC%2B%2BPython-BFS-Topological-Sorting-O(N-%2B-E)

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 207. Course Schedule 课程清单的更多相关文章

  1. [LeetCode] 207. Course Schedule 课程安排

    There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prer ...

  2. [LeetCode] Course Schedule 课程清单

    There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prer ...

  3. LN : leetcode 207 Course Schedule

    lc 207 Course Schedule 207 Course Schedule There are a total of n courses you have to take, labeled ...

  4. LeetCode - 207. Course Schedule

    207. Course Schedule Problem's Link ---------------------------------------------------------------- ...

  5. Java for LeetCode 207 Course Schedule【Medium】

    There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prer ...

  6. [LeetCode] 207. Course Schedule 课程表

    题目: 分析: 这是一道典型的拓扑排序问题.那么何为拓扑排序? 拓扑排序: 有三件事情A,B,C要完成,A随时可以完成,但B和C只有A完成之后才可完成,那么拓扑排序可以为A>B>C或A&g ...

  7. [leetcode]207. Course Schedule课程表

    在一个有向图中,每次找到一个没有前驱节点的节点(也就是入度为0的节点),然后把它指向其他节点的边都去掉,重复这个过程(BFS),直到所有节点已被找到,或者没有符合条件的节点(如果图中有环存在). /* ...

  8. (medium)LeetCode 207.Course Schedule

    There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have prer ...

  9. LeetCode 207. Course Schedule(拓扑排序)

    题目 There are a total of n courses you have to take, labeled from 0 to n - 1. Some courses may have p ...

随机推荐

  1. Python 文件readlines()方法

    原文连接:https://www.runoob.com/python/file-readlines.html readlines()方法用于读取所有行(直到结束符EOF)并返回列表,该列表可以由pyt ...

  2. python Condition

    import threading # 必须要使用condition的例子 # class XiaoAi(threading.Thread):# def __init__(self, lock):# s ...

  3. 云原生生态周报 Vol.9| K8s v1.15 版本发布

    本周作者 | 衷源.心贵 业界要闻 1.Kubernetes Release v1.15 版本发布,新版本的两个主题是持续性改进和可扩展性.(https://github.com/kubernetes ...

  4. Android studio R文件丢失或错误解决方法

    android studio中有时引用资源会出现R文件丢失或报错,大多数情况下是由于引入资源时R文件没有及时更新造成的 (在代码没有错误或资源引用没有错误的前提下) 注意:资源文件的文件名必须小写,即 ...

  5. Java多线程——ThreadLocal类的原理和使用

    Java多线程——ThreadLocal类的原理和使用 摘要:本文主要学习了ThreadLocal类的原理和使用. 概述 是什么 ThreadLocal可以用来维护一个变量,提供了一个ThreadLo ...

  6. jenkins+robotframework邮件发送报告模板

    1.Jenkins中配置系统邮件系统管理–系统设置,配置Extended E-mail Notification 2.jenkins 创建一个新项目,项目创建成功,配置邮件

  7. ASP.NET Core系列:依赖注入

    1. 控制反转(IoC) 控制反转(Inversion of Control,IoC),是面向对象编程中的一种设计原则,用来降低代码之间的耦合度. 1.1 依赖倒置 依赖原则: (1)高层次的模块不应 ...

  8. Vue计算属性computed的全面解析

    前言 一直以来对computed这个计算属性都只停在一个大概的认知中,最近特意仔细研读相关资料,亲测后逐渐了解了其特性. 正文 computed 特点: 1.初始化/依赖属性(即data属性)改变时执 ...

  9. redo log 重做日志

    --------------------------------------------------2015-02-10---------------------------------------- ...

  10. 7. [mmc subsystem] host(第一章)——概述

    一.host简单说明 host,也可以理解为host controller,是指mmc总线上的主机端,mmc总线的控制器,每个host controller对应一条mmc总线. host contro ...