Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.

You have the following 3 operations permitted on a word:

  1. Insert a character
  2. Delete a character
  3. Replace a character

Example 1:

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')

Example 2:

Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')

这道题让求从一个字符串转变到另一个字符串需要的变换步骤,共有三种变换方式,插入一个字符,删除一个字符,和替换一个字符。题目乍眼一看并不难,但是实际上却暗藏玄机,对于两个字符串的比较,一般都会考虑一下用 HashMap 统计字符出现的频率,但是在这道题却不可以这么做,因为字符串的顺序很重要。还有一种比较常见的错误,就是想当然的认为对于长度不同的两个字符串,长度的差值都是要用插入操作,然后再对应每位字符,不同的地方用修改操作,但是其实这样可能会多用操作,因为删除操作有时同时可以达到修改的效果。比如题目中的例子1,当把 horse 变为 rorse 之后,之后只要删除第二个r,跟最后一个e,就可以变为 ros。实际上只要三步就完成了,因为删除了某个字母后,原来左右不相连的字母现在就连一起了,有可能刚好组成了需要的字符串。所以在比较的时候,要尝试三种操作,因为谁也不知道当前的操作会对后面产生什么样的影响。对于当前比较的两个字符 word1[i] 和 word2[j],若二者相同,一切好说,直接跳到下一个位置。若不相同,有三种处理方法,首先是直接插入一个 word2[j],那么 word2[j] 位置的字符就跳过了,接着比较 word1[i] 和 word2[j+1] 即可。第二个种方法是删除,即将 word1[i] 字符直接删掉,接着比较 word1[i+1] 和 word2[j] 即可。第三种则是将 word1[i] 修改为 word2[j],接着比较 word1[i+1] 和 word[j+1] 即可。分析到这里,就可以直接写出递归的代码,但是很可惜会 Time Limited Exceed,所以必须要优化时间复杂度,需要去掉大量的重复计算,这里使用记忆数组 memo 来保存计算过的状态,从而可以通过 OJ,注意这里的 insertCnt,deleteCnt,replaceCnt 仅仅是表示当前对应的位置分别采用了插入,删除,和替换操作,整体返回的最小距离,后面位置的还是会调用递归返回最小的,参见代码如下:

解法一:

class Solution {
public:
int minDistance(string word1, string word2) {
int m = word1.size(), n = word2.size();
vector<vector<int>> memo(m, vector<int>(n));
return helper(word1, , word2, , memo);
}
int helper(string& word1, int i, string& word2, int j, vector<vector<int>>& memo) {
if (i == word1.size()) return (int)word2.size() - j;
if (j == word2.size()) return (int)word1.size() - i;
if (memo[i][j] > ) return memo[i][j];
int res = ;
if (word1[i] == word2[j]) {
return helper(word1, i + , word2, j + , memo);
} else {
int insertCnt = helper(word1, i, word2, j + , memo);
int deleteCnt = helper(word1, i + , word2, j, memo);
int replaceCnt = helper(word1, i + , word2, j + , memo);
res = min(insertCnt, min(deleteCnt, replaceCnt)) + ;
}
return memo[i][j] = res;
}
};

根据以往的经验,对于字符串相关的题目且求极值的问题,十有八九都是用动态规划 Dynamic Programming 来解,这道题也不例外。其实解法一的递归加记忆数组的方法也可以看作是 DP 的递归写法。这里需要维护一个二维的数组 dp,其大小为 mxn,m和n分别为 word1 和 word2 的长度。dp[i][j] 表示从 word1 的前i个字符转换到 word2 的前j个字符所需要的步骤。先给这个二维数组 dp 的第一行第一列赋值,这个很简单,因为第一行和第一列对应的总有一个字符串是空串,于是转换步骤完全是另一个字符串的长度。跟以往的 DP 题目类似,难点还是在于找出状态转移方程,可以举个例子来看,比如 word1 是 "bbc",word2 是 "abcd",可以得到 dp 数组如下:

  Ø a b c d
Ø
b
b
c

通过观察可以发现,当 word1[i] == word2[j] 时,dp[i][j] = dp[i - 1][j - 1],其他情况时,dp[i][j] 是其左,左上,上的三个值中的最小值加1,其实这里的左,上,和左上,分别对应的增加,删除,修改操作,具体可以参见解法一种的讲解部分,那么可以得到状态转移方程为:

dp[i][j] =      /    dp[i - 1][j - 1]                                                                   if word1[i - 1] == word2[j - 1]

\    min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1])) + 1            else

解法二:

class Solution {
public:
int minDistance(string word1, string word2) {
int m = word1.size(), n = word2.size();
vector<vector<int>> dp(m + , vector<int>(n + ));
for (int i = ; i <= m; ++i) dp[i][] = i;
for (int i = ; i <= n; ++i) dp[][i] = i;
for (int i = ; i <= m; ++i) {
for (int j = ; j <= n; ++j) {
if (word1[i - ] == word2[j - ]) {
dp[i][j] = dp[i - ][j - ];
} else {
dp[i][j] = min(dp[i - ][j - ], min(dp[i - ][j], dp[i][j - ])) + ;
}
}
}
return dp[m][n];
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/72

类似题目:

One Edit Distance

Delete Operation for Two Strings

Minimum ASCII Delete Sum for Two Strings

参考资料:

https://leetcode.com/problems/edit-distance/

https://leetcode.com/problems/edit-distance/discuss/25846/C%2B%2B-O(n)-space-DP

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 72. Edit Distance 编辑距离的更多相关文章

  1. leetCode 72.Edit Distance (编辑距离) 解题思路和方法

    Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert  ...

  2. [LeetCode] 72. Edit Distance(最短编辑距离)

    传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...

  3. 【LeetCode】72. Edit Distance 编辑距离(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 递归 记忆化搜索 动态规划 日期 题目地址:http ...

  4. LeetCode - 72. Edit Distance

    最小编辑距离,动态规划经典题. Given two words word1 and word2, find the minimum number of steps required to conver ...

  5. [leetcode]72. Edit Distance 最少编辑步数

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to ...

  6. 72. Edit Distance(编辑距离 动态规划)

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to  ...

  7. 第十八周 Leetcode 72. Edit Distance(HARD) O(N^2)DP

    Leetcode72 看起来比较棘手的一道题(列DP方程还是要大胆猜想..) DP方程该怎么列呢? dp[i][j]表示字符串a[0....i-1]转化为b[0....j-1]的最少距离 转移方程分三 ...

  8. [leetcode] 72. Edit Distance (hard)

    原题 dp 利用二维数组dp[i][j]存储状态: 从字符串A的0~i位子字符串 到 字符串B的0~j位子字符串,最少需要几步.(每一次删增改都算1步) 所以可得边界状态dp[i][0]=i,dp[0 ...

  9. 【Leetcode】72 Edit Distance

    72. Edit Distance Given two words word1 and word2, find the minimum number of steps required to conv ...

随机推荐

  1. Unity Shader NPR 卡通渲染

    卡通渲染的主要原理包含两个方面: 1.轮廓线的描边效果 2.模型漫反射离散和纯色高光区域的模拟 描边: 描边的实现方法采用将模型的轮廓线顶点向法线(或顶点)的方向扩展一定的像素得到.也可通过边缘检测( ...

  2. spring 注解AOP

     aspectAnnotation的切面信息,加到了AnnotationAwareAspectJAutoProxyCreator的advisorsCache属性里面去了. 解析annotationSe ...

  3. 软件----- idea 配置创建一个简单javase项目

    1.显示工具栏和工具按钮,勾选上 如图,在左侧会增加对应的 2.设置项目结构,选择jdk 点击new  选择需要jdk 3.创建一个简单的java文件,和eclipse与myeslipse 差不多, ...

  4. Anaconda--在虚拟环境中安装CUDA and cudnn

    在conda虚拟环境中安装CUDAconda install cudatoolkit=8.0 -c https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs ...

  5. Window权限维持(四):快捷方式修改

    Windows快捷方式包含对系统上安装的软件或文件位置(网络或本地)的引用.自从恶意软件出现之初,便已将快捷方式用作执行恶意代码以实现持久性的一种方法.快捷方式的文件扩展名是.LNK,它为红队提供了很 ...

  6. 高性能TcpServer(C#) - 2.创建高性能Socket服务器SocketAsyncEventArgs的实现(IOCP)

    高性能TcpServer(C#) - 1.网络通信协议 高性能TcpServer(C#) - 2.创建高性能Socket服务器SocketAsyncEventArgs的实现(IOCP) 高性能TcpS ...

  7. Git 分支代码管理日记备注

    1〉  Bithucket 创建代码库 2〉  下载克隆代码 Git clone 代码链接 3〉  代码初始化完成之后,切换到代码文件夹 cd 文件夹名 4〉  查看分支情况 Git brach 5〉 ...

  8. c# 读取txt文件中文乱码解决方法

    之前做过一个项目,在程序运行目录下有个txt文件,文件内容是中文的时候会乱码, 后来用这个函数处理后,就不乱码了: private string GetPDA_Code()        {      ...

  9. Scrum冲刺第四篇

    一.每日例会 会议照片 成员 昨日已完成的工作 今日计划完成的工作 工作中遇到的困难 陈嘉欣 撰写博客,管理成员提交代码 和队友一同开发音乐控制模块 对音频控制方面知识了解少,功能实现困难 邓镇港 帮 ...

  10. 软件设计师【软件工程:软件开发模型、XP极限编程十二最佳实践】

    一.软件开发模型 二.XP极限编程十二最佳实践