Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.

You have the following 3 operations permitted on a word:

  1. Insert a character
  2. Delete a character
  3. Replace a character

Example 1:

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')

Example 2:

Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')

这道题让求从一个字符串转变到另一个字符串需要的变换步骤,共有三种变换方式,插入一个字符,删除一个字符,和替换一个字符。题目乍眼一看并不难,但是实际上却暗藏玄机,对于两个字符串的比较,一般都会考虑一下用 HashMap 统计字符出现的频率,但是在这道题却不可以这么做,因为字符串的顺序很重要。还有一种比较常见的错误,就是想当然的认为对于长度不同的两个字符串,长度的差值都是要用插入操作,然后再对应每位字符,不同的地方用修改操作,但是其实这样可能会多用操作,因为删除操作有时同时可以达到修改的效果。比如题目中的例子1,当把 horse 变为 rorse 之后,之后只要删除第二个r,跟最后一个e,就可以变为 ros。实际上只要三步就完成了,因为删除了某个字母后,原来左右不相连的字母现在就连一起了,有可能刚好组成了需要的字符串。所以在比较的时候,要尝试三种操作,因为谁也不知道当前的操作会对后面产生什么样的影响。对于当前比较的两个字符 word1[i] 和 word2[j],若二者相同,一切好说,直接跳到下一个位置。若不相同,有三种处理方法,首先是直接插入一个 word2[j],那么 word2[j] 位置的字符就跳过了,接着比较 word1[i] 和 word2[j+1] 即可。第二个种方法是删除,即将 word1[i] 字符直接删掉,接着比较 word1[i+1] 和 word2[j] 即可。第三种则是将 word1[i] 修改为 word2[j],接着比较 word1[i+1] 和 word[j+1] 即可。分析到这里,就可以直接写出递归的代码,但是很可惜会 Time Limited Exceed,所以必须要优化时间复杂度,需要去掉大量的重复计算,这里使用记忆数组 memo 来保存计算过的状态,从而可以通过 OJ,注意这里的 insertCnt,deleteCnt,replaceCnt 仅仅是表示当前对应的位置分别采用了插入,删除,和替换操作,整体返回的最小距离,后面位置的还是会调用递归返回最小的,参见代码如下:

解法一:

class Solution {
public:
int minDistance(string word1, string word2) {
int m = word1.size(), n = word2.size();
vector<vector<int>> memo(m, vector<int>(n));
return helper(word1, , word2, , memo);
}
int helper(string& word1, int i, string& word2, int j, vector<vector<int>>& memo) {
if (i == word1.size()) return (int)word2.size() - j;
if (j == word2.size()) return (int)word1.size() - i;
if (memo[i][j] > ) return memo[i][j];
int res = ;
if (word1[i] == word2[j]) {
return helper(word1, i + , word2, j + , memo);
} else {
int insertCnt = helper(word1, i, word2, j + , memo);
int deleteCnt = helper(word1, i + , word2, j, memo);
int replaceCnt = helper(word1, i + , word2, j + , memo);
res = min(insertCnt, min(deleteCnt, replaceCnt)) + ;
}
return memo[i][j] = res;
}
};

根据以往的经验,对于字符串相关的题目且求极值的问题,十有八九都是用动态规划 Dynamic Programming 来解,这道题也不例外。其实解法一的递归加记忆数组的方法也可以看作是 DP 的递归写法。这里需要维护一个二维的数组 dp,其大小为 mxn,m和n分别为 word1 和 word2 的长度。dp[i][j] 表示从 word1 的前i个字符转换到 word2 的前j个字符所需要的步骤。先给这个二维数组 dp 的第一行第一列赋值,这个很简单,因为第一行和第一列对应的总有一个字符串是空串,于是转换步骤完全是另一个字符串的长度。跟以往的 DP 题目类似,难点还是在于找出状态转移方程,可以举个例子来看,比如 word1 是 "bbc",word2 是 "abcd",可以得到 dp 数组如下:

  Ø a b c d
Ø
b
b
c

通过观察可以发现,当 word1[i] == word2[j] 时,dp[i][j] = dp[i - 1][j - 1],其他情况时,dp[i][j] 是其左,左上,上的三个值中的最小值加1,其实这里的左,上,和左上,分别对应的增加,删除,修改操作,具体可以参见解法一种的讲解部分,那么可以得到状态转移方程为:

dp[i][j] =      /    dp[i - 1][j - 1]                                                                   if word1[i - 1] == word2[j - 1]

\    min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1])) + 1            else

解法二:

class Solution {
public:
int minDistance(string word1, string word2) {
int m = word1.size(), n = word2.size();
vector<vector<int>> dp(m + , vector<int>(n + ));
for (int i = ; i <= m; ++i) dp[i][] = i;
for (int i = ; i <= n; ++i) dp[][i] = i;
for (int i = ; i <= m; ++i) {
for (int j = ; j <= n; ++j) {
if (word1[i - ] == word2[j - ]) {
dp[i][j] = dp[i - ][j - ];
} else {
dp[i][j] = min(dp[i - ][j - ], min(dp[i - ][j], dp[i][j - ])) + ;
}
}
}
return dp[m][n];
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/72

类似题目:

One Edit Distance

Delete Operation for Two Strings

Minimum ASCII Delete Sum for Two Strings

参考资料:

https://leetcode.com/problems/edit-distance/

https://leetcode.com/problems/edit-distance/discuss/25846/C%2B%2B-O(n)-space-DP

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 72. Edit Distance 编辑距离的更多相关文章

  1. leetCode 72.Edit Distance (编辑距离) 解题思路和方法

    Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert  ...

  2. [LeetCode] 72. Edit Distance(最短编辑距离)

    传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...

  3. 【LeetCode】72. Edit Distance 编辑距离(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 递归 记忆化搜索 动态规划 日期 题目地址:http ...

  4. LeetCode - 72. Edit Distance

    最小编辑距离,动态规划经典题. Given two words word1 and word2, find the minimum number of steps required to conver ...

  5. [leetcode]72. Edit Distance 最少编辑步数

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to ...

  6. 72. Edit Distance(编辑距离 动态规划)

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to  ...

  7. 第十八周 Leetcode 72. Edit Distance(HARD) O(N^2)DP

    Leetcode72 看起来比较棘手的一道题(列DP方程还是要大胆猜想..) DP方程该怎么列呢? dp[i][j]表示字符串a[0....i-1]转化为b[0....j-1]的最少距离 转移方程分三 ...

  8. [leetcode] 72. Edit Distance (hard)

    原题 dp 利用二维数组dp[i][j]存储状态: 从字符串A的0~i位子字符串 到 字符串B的0~j位子字符串,最少需要几步.(每一次删增改都算1步) 所以可得边界状态dp[i][0]=i,dp[0 ...

  9. 【Leetcode】72 Edit Distance

    72. Edit Distance Given two words word1 and word2, find the minimum number of steps required to conv ...

随机推荐

  1. kali渗透综合靶机(四)--node1靶机

    kali渗透综合靶机(四)--node1靶机 靶机下载地址::https://download.vulnhub.com/node/Node.ova 一.主机发现 1.netdiscover -i et ...

  2. matplotlib基础

    Matplotlib 基础 注:本文中的程序都默认引入了numpy库和matplotlib库,并且分别简写为np与plt:如果读者不知道怎么使用numpy库,可以移步到这一博客上进行简单的学习 一.简 ...

  3. PIE调用Python返回得到直方图矩阵数组

    前段时间我研究了PIE SDK与Python的结合,已经能成功的通过C#调用Python,获得彩色直方图.(上一篇随笔中有分享:https://www.cnblogs.com/yuan1120/p/1 ...

  4. IIS错误:在唯一密钥属性“fileExtension”设置为“.json”时,无法添加类型为“mimeMap”的重复集合项

    在用visual studio 打开一个asp.net mvc 项目时,ctrl+f5运行,发现页面无法加载图片.js.json文件. 按F12查看错误,发现500错误.打开报错的js文件,提示: I ...

  5. Java自学-集合框架 List接口

    ArrayList与List接口 步骤 1 : ArrayList和List ArrayList实现了接口List 常见的写法会把引用声明为接口List类型 注意:是java.util.List,而不 ...

  6. 英语rhodita铑金RHODITA单词

    铑金RHODITA,铑属铂系元素.铂系元素几乎完全成单质状态存在,高度分散在各种矿石中,例如原铂矿.硫化镍铜矿.磁铁矿等.铂系元素几乎无例外地共同存在,形成天然合金.在含铂系元素矿石中,通常以铂为主要 ...

  7. 个人项目:WC

    一.GitHub项目地址:https://github.com/lseap/myWC 二.PSP表格: PSP2.1 Personal Software Process Stages 预估耗时(分钟) ...

  8. [Caliburn.Micro专题][1]快速入门

    目录 1. 什么是Caliburn.Micro? 2. 我是否需要学习CM框架? 3. 如何下手? 3.1 需要理解以下几个概念: 3.2 工程概览 3.3 示例代码 开场白:本系列为个人学习记录,才 ...

  9. MYSQL练习随笔

    解法练习 案例1.子查询练习 字段 说明film_id 电影idtitle 电影名称description 电影描述信息category_id 电影分类idname 电影分类名称last_update ...

  10. Jquery ajax 同步阻塞引起的UI线程阻塞的坑(loading图片显示不出来,layer.load延迟)

    今天想做一个点击地市用ajax重新获取数据刷新页面功能,因为ajax属于耗时操作,想在获取数据且加载页面时显示加载遮罩层,结果发现了ajax的好多坑. 例如如上栗子,我想点击按钮让遮罩层显示,ajax ...