Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2.

You have the following 3 operations permitted on a word:

  1. Insert a character
  2. Delete a character
  3. Replace a character

Example 1:

Input: word1 = "horse", word2 = "ros"
Output: 3
Explanation:
horse -> rorse (replace 'h' with 'r')
rorse -> rose (remove 'r')
rose -> ros (remove 'e')

Example 2:

Input: word1 = "intention", word2 = "execution"
Output: 5
Explanation:
intention -> inention (remove 't')
inention -> enention (replace 'i' with 'e')
enention -> exention (replace 'n' with 'x')
exention -> exection (replace 'n' with 'c')
exection -> execution (insert 'u')

这道题让求从一个字符串转变到另一个字符串需要的变换步骤,共有三种变换方式,插入一个字符,删除一个字符,和替换一个字符。题目乍眼一看并不难,但是实际上却暗藏玄机,对于两个字符串的比较,一般都会考虑一下用 HashMap 统计字符出现的频率,但是在这道题却不可以这么做,因为字符串的顺序很重要。还有一种比较常见的错误,就是想当然的认为对于长度不同的两个字符串,长度的差值都是要用插入操作,然后再对应每位字符,不同的地方用修改操作,但是其实这样可能会多用操作,因为删除操作有时同时可以达到修改的效果。比如题目中的例子1,当把 horse 变为 rorse 之后,之后只要删除第二个r,跟最后一个e,就可以变为 ros。实际上只要三步就完成了,因为删除了某个字母后,原来左右不相连的字母现在就连一起了,有可能刚好组成了需要的字符串。所以在比较的时候,要尝试三种操作,因为谁也不知道当前的操作会对后面产生什么样的影响。对于当前比较的两个字符 word1[i] 和 word2[j],若二者相同,一切好说,直接跳到下一个位置。若不相同,有三种处理方法,首先是直接插入一个 word2[j],那么 word2[j] 位置的字符就跳过了,接着比较 word1[i] 和 word2[j+1] 即可。第二个种方法是删除,即将 word1[i] 字符直接删掉,接着比较 word1[i+1] 和 word2[j] 即可。第三种则是将 word1[i] 修改为 word2[j],接着比较 word1[i+1] 和 word[j+1] 即可。分析到这里,就可以直接写出递归的代码,但是很可惜会 Time Limited Exceed,所以必须要优化时间复杂度,需要去掉大量的重复计算,这里使用记忆数组 memo 来保存计算过的状态,从而可以通过 OJ,注意这里的 insertCnt,deleteCnt,replaceCnt 仅仅是表示当前对应的位置分别采用了插入,删除,和替换操作,整体返回的最小距离,后面位置的还是会调用递归返回最小的,参见代码如下:

解法一:

class Solution {
public:
int minDistance(string word1, string word2) {
int m = word1.size(), n = word2.size();
vector<vector<int>> memo(m, vector<int>(n));
return helper(word1, , word2, , memo);
}
int helper(string& word1, int i, string& word2, int j, vector<vector<int>>& memo) {
if (i == word1.size()) return (int)word2.size() - j;
if (j == word2.size()) return (int)word1.size() - i;
if (memo[i][j] > ) return memo[i][j];
int res = ;
if (word1[i] == word2[j]) {
return helper(word1, i + , word2, j + , memo);
} else {
int insertCnt = helper(word1, i, word2, j + , memo);
int deleteCnt = helper(word1, i + , word2, j, memo);
int replaceCnt = helper(word1, i + , word2, j + , memo);
res = min(insertCnt, min(deleteCnt, replaceCnt)) + ;
}
return memo[i][j] = res;
}
};

根据以往的经验,对于字符串相关的题目且求极值的问题,十有八九都是用动态规划 Dynamic Programming 来解,这道题也不例外。其实解法一的递归加记忆数组的方法也可以看作是 DP 的递归写法。这里需要维护一个二维的数组 dp,其大小为 mxn,m和n分别为 word1 和 word2 的长度。dp[i][j] 表示从 word1 的前i个字符转换到 word2 的前j个字符所需要的步骤。先给这个二维数组 dp 的第一行第一列赋值,这个很简单,因为第一行和第一列对应的总有一个字符串是空串,于是转换步骤完全是另一个字符串的长度。跟以往的 DP 题目类似,难点还是在于找出状态转移方程,可以举个例子来看,比如 word1 是 "bbc",word2 是 "abcd",可以得到 dp 数组如下:

  Ø a b c d
Ø
b
b
c

通过观察可以发现,当 word1[i] == word2[j] 时,dp[i][j] = dp[i - 1][j - 1],其他情况时,dp[i][j] 是其左,左上,上的三个值中的最小值加1,其实这里的左,上,和左上,分别对应的增加,删除,修改操作,具体可以参见解法一种的讲解部分,那么可以得到状态转移方程为:

dp[i][j] =      /    dp[i - 1][j - 1]                                                                   if word1[i - 1] == word2[j - 1]

\    min(dp[i - 1][j - 1], min(dp[i - 1][j], dp[i][j - 1])) + 1            else

解法二:

class Solution {
public:
int minDistance(string word1, string word2) {
int m = word1.size(), n = word2.size();
vector<vector<int>> dp(m + , vector<int>(n + ));
for (int i = ; i <= m; ++i) dp[i][] = i;
for (int i = ; i <= n; ++i) dp[][i] = i;
for (int i = ; i <= m; ++i) {
for (int j = ; j <= n; ++j) {
if (word1[i - ] == word2[j - ]) {
dp[i][j] = dp[i - ][j - ];
} else {
dp[i][j] = min(dp[i - ][j - ], min(dp[i - ][j], dp[i][j - ])) + ;
}
}
}
return dp[m][n];
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/72

类似题目:

One Edit Distance

Delete Operation for Two Strings

Minimum ASCII Delete Sum for Two Strings

参考资料:

https://leetcode.com/problems/edit-distance/

https://leetcode.com/problems/edit-distance/discuss/25846/C%2B%2B-O(n)-space-DP

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 72. Edit Distance 编辑距离的更多相关文章

  1. leetCode 72.Edit Distance (编辑距离) 解题思路和方法

    Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert  ...

  2. [LeetCode] 72. Edit Distance(最短编辑距离)

    传送门 Description Given two words word1 and word2, find the minimum number of steps required to conver ...

  3. 【LeetCode】72. Edit Distance 编辑距离(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 递归 记忆化搜索 动态规划 日期 题目地址:http ...

  4. LeetCode - 72. Edit Distance

    最小编辑距离,动态规划经典题. Given two words word1 and word2, find the minimum number of steps required to conver ...

  5. [leetcode]72. Edit Distance 最少编辑步数

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to ...

  6. 72. Edit Distance(编辑距离 动态规划)

    Given two words word1 and word2, find the minimum number of operations required to convert word1 to  ...

  7. 第十八周 Leetcode 72. Edit Distance(HARD) O(N^2)DP

    Leetcode72 看起来比较棘手的一道题(列DP方程还是要大胆猜想..) DP方程该怎么列呢? dp[i][j]表示字符串a[0....i-1]转化为b[0....j-1]的最少距离 转移方程分三 ...

  8. [leetcode] 72. Edit Distance (hard)

    原题 dp 利用二维数组dp[i][j]存储状态: 从字符串A的0~i位子字符串 到 字符串B的0~j位子字符串,最少需要几步.(每一次删增改都算1步) 所以可得边界状态dp[i][0]=i,dp[0 ...

  9. 【Leetcode】72 Edit Distance

    72. Edit Distance Given two words word1 and word2, find the minimum number of steps required to conv ...

随机推荐

  1. Mlsql内部资源调度读取opentsdb数据信息代码

    package com.redoop.mlsqlimport java.net.URLEncoderimport java.nio.charset.Charsetimport net.sf.json. ...

  2. java、JavaScript获取微信用户信息登录优化方案

    1.获取微信用户信息要调用微信的好几个接口,再加上自己系统的接口就会变的很慢,影响用户体验,之前走过的弯路我就不赘述了,直接说新的方案. 2.第一步都是向微信发起获取用户code请求: 请求接口:ht ...

  3. thymeleaf入门

    controller层添加实体 html <!DOCTYPE html> <html xmlns:th="http://www.thymeleaf.org"> ...

  4. 关于Idea突然无法输入的诡异问题解决

    问题描述 最近加班把自己的装有Debian的笔记本带到公司,使用Idea写代码的时候,突然间无法输入,ctrl与tab还可用,重启Idea能得到一阵的解决 解决参考 如果是Linux平台,请考虑是否是 ...

  5. java架构之路-(JVM优化与原理)JVM的运行时内存模型

    还是我们上次的图,我们上次大概讲解了类加载子系统的执行过程,验证,准备,解析,初始化四个过程.还有我们的双亲委派机制. 我们这次来说一下运行时内存模型.上一段小代码. public class Mai ...

  6. NaN不等于NaN

    目录 原因 表达式计算 类型转换 总结 不知道这个小知识点用得多不多,曾经在书上看到过,所以有一些印象,前段时间顺手写出类似如下的代码 var result; if (parseInt('abc')= ...

  7. postman强大的团队协作功能

    今天无意在调项目的接口 ,使用的postman工具 ,自己写的接口信息,只能自己看 ,感觉有点不方便,如果一个公司多名测试,如果一个人写接口信息,大家都能用,就会很节约时间 所以团队协作的功能就诞生了 ...

  8. FastReport的模板文件frx文件啊怎样打开并编辑修改

    场景 FastReport安装包下载.安装.去除使用限制以及工具箱中添加控件: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/10 ...

  9. PHP 数组函数大全

    PHP数组函数是核心的一部分.无需安装即可使用这些函数 函数名称 描述 array_change_key_case 将数组中的所有键名修改为全大写或小写 array_chunk 将一个数组分割成多个 ...

  10. 阿里云 centos7 安装MySQL8.0.13

    1.下载MySQL安装包(这里是有技巧的,说不定我这时写这个的时候版本还是你看到时的旧版本了,如果已经不是8.0了,可以根据这样来 下新版本) 先进入官网 再将这两者一结合,就是最新版本的了 所以 [ ...