C++动态规划实现查找最长公共子序列
问题描述:
给定两个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y的最长公共子序列。(给定两个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。)
细节须知(与之前随笔的对比):
将由数组存储起来一并输出至文件修改为边运行边输出,增加了程序的鲁棒性。
算法原理:
a.最长公共子序列的结构
对X的所有子序列,检查它是否也是Y的子序列,从而确定它是否为X和Y的公共子序列。并且在检查过程中记录最长的公共子序列。X的所有子序列都检查过后即可求出X和Y的最长公共子序列。X的每个子序列相应于下标集{1,2,…,m}的一个子集。
b.子问题的递归结构
要找出X和Y的最长公共子序列,可按以下方式递归计算:当xm=yn时,找出Xm-1和Yn-1的最长公共子序列,然后在其尾部加上xm(=yn)即可得到X和Y的最长公共子序列。当xm≠yn时,必须解两个子问题,即找出Xm-1和Y的一个最长公共子序列及X和Yn-1的一个最长公共子序列。这两个公共子序列中较长者即为X和Y的最长公共子序列。
c.计算最优值
利用动态规划算法自底向上地计算最优值。
d.构造最长公共子序列
首先从b[m][n]开始,依其值在数组b中搜索。当b[i][j]=1时,表示Xi和Yj的最长公共子序列
#include<cstdio>
#include<cstring>
#include<stack>
#include<ctime>
#include<iostream>
#include<fstream>
#include<algorithm>
#include<windows.h>
using namespace std;
LARGE_INTEGER nFreq;//LARGE_INTEGER在64位系统中是LONGLONG,在32位系统中是高低两个32位的LONG,在windows.h中通过预编译宏作定义
LARGE_INTEGER nBeginTime;//记录开始时的计数器的值
LARGE_INTEGER nEndTime;//记录停止时的计数器的值
#define N 10000
//const int SIZE_CHAR = 10000; //生成32 + 1位C Style字符串
const char CCH[] = "_0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ_";
int dp[N][N];
char c;
int main(void)
{
//char a[N];
//char b[N];
//char a[SIZE_CHAR+2];
//char b[SIZE_CHAR+2];
ofstream fout;
int m = ,i = ;
int SIZE_CHAR;
cout<<"Please enter the number of times you want to run the program:"; //输入程序运行次数
cin>>m;
//int SIZE[m];
double cost;
//double runtime[m];
srand((unsigned)time(NULL));
fout.open("data.txt",ios::app);
if(!fout){
cerr<<"Can not open file 'data.txt' "<<endl;
return -;
}
fout.setf(ios_base::fixed,ios_base::floatfield); //防止输出的数字使用科学计数法
for(i = ; i < m; i++){
//SIZE_CHAR=10000+RAND_MAX*(rand()%300)+rand(); //RAND_MAX=32767,随机生成数据量
SIZE_CHAR = rand() % ;
fout<<SIZE_CHAR<<",";
// SIZE[i]=SIZE_CHAR; //限定数据规模为10000~9872867
char a[SIZE_CHAR + ] = {'\0'};
char b[SIZE_CHAR + ] = {'\0'};
cout<<"☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆The "<<i+<<"th test's string size is:"<<SIZE_CHAR<<"☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆☆"<<endl;
for (int i = ; i < SIZE_CHAR; ++i){
int x = rand() / (RAND_MAX / (sizeof(CCH) - ));
a[i] = CCH[x];
}
cout<<"The first random sting is:" <<a <<endl;
for (int i = ; i < SIZE_CHAR; ++i){
int x = rand() / (RAND_MAX / (sizeof(CCH) - ));
b[i] = CCH[x];
}
cout<<"The second random string is:" <<b <<endl;
cout<<"The longest common subsequence is:";
QueryPerformanceFrequency(&nFreq);//获取系统时钟频率
QueryPerformanceCounter(&nBeginTime);//获取开始时刻计数值
int la=strlen(a);
int lb=strlen(b);
memset(dp,,sizeof(dp));
for(int i=; i<=la; i++){
for(int j=; j<=lb; j++){
if(a[i-]==b[j-])
dp[i][j]=dp[i-][j-]+;
else
dp[i][j]=max(dp[i-][j],dp[i][j-]);
}
}
int i=la,j=lb;
stack<char>s;
while(dp[i][j]){
if(dp[i][j]==dp[i-][j]){//来自于左方向
i--;
}
else if(dp[i][j]==dp[i][j-]){//来自于上方向
j--;
}
else if(dp[i][j]>dp[i-][j-]){//来自于左上方向
i--;
j--;
s.push(a[i]); //压栈以便倒序输出
}
}
while(!s.empty())
{
c=s.top();
printf("%c",c);
s.pop();
}
cout<<endl;
QueryPerformanceCounter(&nEndTime);//获取停止时刻计数值
cost=(double)(nEndTime.QuadPart - nBeginTime.QuadPart) / (double)nFreq.QuadPart;
fout<<cost<<endl;
//runtime[i]=cost;
cout<<"The running time is:"<<cost<<" s"<<endl;
}
fout.close();
cout<<"Success!"<<endl;
return ;
}
程序设计思路:
设序列X={x1,x2,…,xm}和Y={y1,y2,…,yn}的最长公共子序列为Z={z1,z2,…,zk},则
a.若xm=yn,则zk=xm=yn,且Zk-1是Xm-1和Yn-1的最长公共子序列。
b.若xm≠yn,且zk≠xm,则Z是Xm-1和Y的最长公共子序列。
c.若xm≠yn,且zk≠yn,则Z是X和Yn-1的最长公共子序列。
其中,Xm-1={x1,x2,…,xm-1};Ym-1={y1,y2,…,yn-1};Zk-1={z1,z2,…,zk-1}。
② 子问题的递归结构
首先建立子问题最优值的递归关系。用c[i][j]记录序列Xi和Yj的最长公共子序列的长度。其中,X={x1,x2,…,xm};Y={y1,y2,…,yn}。当i=0或j=0时,空序列是Xi和Yj的最长公共子序列,故此时c[i][j]=0。在其他情况下,由最优子结构性质课件里递归关系如下:
③计算最优值
以序列X和Y作为输入。输出两个数组c和b。其中c[i][j]存储Xi和Yj的最长公共子序列的长度,b[i][j]记录c[i][j]的值是由哪一个子问题的解得到的,这在构造最长公共子序列时要用到。问题的最优值,即X和Y的最长公共子序列的长度记录与c[m][n]中。
④构造最长公共子序列
首先从b[m][n]开始,依其值在数组b中搜索。当b[i][j]=1时,表示Xi和Yj的最长公共子序列是由Xi-1和Yj-1的最长公共子序列在尾部加上xi所得到的子序列;当b[i][j]=2时,表示Xi和Yj的最长公共子序列与Xi-1和Yj的最长公共子序列相同;当b[i][j]=3时,表示Xi和Yj的最长公共子序列与Xi和Yj-1的最长公共子序列相同。
时间复杂性分析:
a.计算最优值
由于每个数组单元的计算耗费O(1)的时间,此部分算法耗时为O(mn)。
b.构造最长公共子序列
该算法每一次递归调用使i或j减1,因此算法的计算时间为O(m+n)。
生成的数据可导入EXCEL中进行数据分析生成分析图表。
C++动态规划实现查找最长公共子序列的更多相关文章
- python实现查找最长公共子序列
#!/usr/bin/python # -*- coding: UTF-8 -*- worlds = ['fosh','fort','vista','fish','hish','hello','ohd ...
- 【动态规划】【最长公共子序列】Vijos P1111 小胖的水果
题目链接: https://vijos.org/p/1111 题目大意: 多组数据,给两个字符串s1,s2,求把s1,s2拆开从前往后合并后最短是多少 apple + peach = appleach ...
- 动态规划二:最长公共子序列(LCS)
1.两个子序列:X={x1,x2....xm},Y={y1,y2....yn},设Z={z1,z2...zk}. 2.最优子结构: 1)如果xm=yn ,则zk=xm=yn且Zk-1是Xm-1和Yn- ...
- 【动态规划】 之最长公共子序列LCS
int lcs_len(char *a, char *b, int c[][N]){ int aLen=strlen(a), bLen=strlen(b), i,j; ; i<=aLen; i+ ...
- 动态规划经典算法--最长公共子序列 LCS
转移方程 代码: //法一: #include <bits/stdc++.h> using namespace std; //---------------https://lunatic. ...
- 《算法导论》读书笔记之动态规划—最长公共子序列 & 最长公共子串(LCS)
From:http://my.oschina.net/leejun2005/blog/117167 1.先科普下最长公共子序列 & 最长公共子串的区别: 找两个字符串的最长公共子串,这个子串要 ...
- LCS问题(最长公共子序列)-动态规划实现
问题描述: 问题] 求两字符序列的最长公共字符子序列 注意: 并不要求子串(字符串一)的字符必须连续出现在字符串二中. 思路分析: 最优子结构和重叠子问题的性质都具有,所以要采取动态规划的算法 最长公 ...
- C++求解汉字字符串的最长公共子序列 动态规划
近期,我在网上看了一些动态规划求字符串最长公共子序列的代码.可是无一例外都是处理英文字符串,当处理汉字字符串时.常常会出现乱码或者不对的情况. 我对代码进行了改动.使用wchar_t类型存储字 ...
- 动态规划 最长公共子序列 LCS,最长单独递增子序列,最长公共子串
LCS:给出两个序列S1和S2,求出的这两个序列的最大公共部分S3就是就是S1和S2的最长公共子序列了.公共部分 必须是以相同的顺序出现,但是不必要是连续的. 选出最长公共子序列.对于长度为n的序列, ...
随机推荐
- ios证书制作与上架指南
项目开发完了,要上架 ios AppStore 记录一下经过,以及需要提前准备和预防的东西,以便下次省心! 一.首先要申请开发者账号: 账号按流程注册申请,当时申请了够10遍,总结以下经验: 1.申请 ...
- 完整的房间类游戏解决方案AiJ
介绍 AiJ是一套完整的房间类游戏解决方案,支持无限水平扩展来满足更大的人数承载,并且提供了良好的调试接口. 主要模块包括: 注册中心 大厅服务 游戏服务 亲友圈服务 运营管理系统 CocosCrea ...
- spoon(kettle)基本配置(连接Mysql和Oracle)
1.下载spoon包和驱动 可以去spoon官网下载需要的spoon版本 官网 :http://kettle.pentaho.org/ 下载的最新版本的kettle是:pdi-ce-7.1.0.0-1 ...
- Linux C/C++编译过程中的各种not declared in this scope
Linux C/C++编译时经常会"XXX was not declared in this scope" 原因可能是以下几种: 变量名或函数名写错了; 忘记定义了 没有成功链接到 ...
- 【IntelliJ IDEA新手入门】IDEA如何快速搭建Java开发环境
作为IntelliJ IDEA mac新手,IDEA如何快速搭建Java开发环境呢? 今天小编就给大家带来了IntelliJ IDEA mac使用教程,想知道IDEA如何快速搭建Java开发环境?那就 ...
- AXIOS 的请求
AXIOS 本质上等同于json 传值 1.引用 //引入axios import Axios from 'axios' //将axios挂载到 Vue原型上 Vue.prototype.$https ...
- MySQL 官方测试库
MySQL 官方测试库 github 地址 https://github.com/datacharmer/test_db MySQL 文档地址 https://dev.mysql.com/doc/em ...
- 常用dos命令(3)
网络命令 ping 进行网络连接测试.名称解析 ftp 文件传输 net 网络命令集及用户管理 telnet 远程登陆 ipconfig显示.修改TCP/IP设置 msg 给用户发送消息 arp 显示 ...
- DFS_BFS(深度优先搜索 和 广度优先搜索)
package com.rao.graph; import java.util.LinkedList; /** * @author Srao * @className BFS_DFS * @date ...
- 【oracle】select into from 和 insert into select 的用法和区别
select into from 和 insert into select都是用来复制表,两者的主要区别为: select into from 要求目标表不存在,因为在插入时会自动创建.insert ...