tensorflow运行时错误:服务似乎挂掉了,但是会立刻重启的.
以前在POD里跑起来,没问题的示例代码。
移到jupyter中,多给两个GPU,有时运行就会爆出这个错误:
于是,按网上的意见,暂时加了个使用GPU的指定,
暂时搞定。
如下红色部分。
import timeit
import os
import tensorflow as tf
import numpy as np
from tensorflow.keras.datasets.cifar10 import load_data
os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'
def model():
x = tf.placeholder(tf.float32, shape=[None, 32, 32, 3])
y = tf.placeholder(tf.float32, shape=[None, 10])
rate = tf.placeholder(tf.float32)
# convolutional layer 1
conv_1 = tf.layers.conv2d(x, 32, [3, 3], padding='SAME', activation=tf.nn.relu)
max_pool_1 = tf.layers.max_pooling2d(conv_1, [2, 2], strides=2, padding='SAME')
drop_1 = tf.layers.dropout(max_pool_1, rate=rate)
# convolutional layer 2
conv_2 = tf.layers.conv2d(drop_1, 64, [3, 3], padding="SAME", activation=tf.nn.relu)
max_pool_2 = tf.layers.max_pooling2d(conv_2, [2, 2], strides=2, padding="SAME")
drop_2 = tf.layers.dropout(max_pool_2, rate=rate)
# convolutional layers 3
conv_3 = tf.layers.conv2d(drop_2, 128, [3, 3], padding="SAME", activation=tf.nn.relu)
max_pool_3 = tf.layers.max_pooling2d(conv_3, [2, 2], strides=2, padding="SAME")
drop_3 = tf.layers.dropout(max_pool_3, rate=rate)
# fully connected layer 1
flat = tf.reshape(drop_3, shape=[-1, 4 * 4 * 128])
fc_1 = tf.layers.dense(flat, 80, activation=tf.nn.relu)
drop_4 = tf.layers.dropout(fc_1 , rate=rate)
# fully connected layer 2 or the output layers
fc_2 = tf.layers.dense(drop_4, 10)
output = tf.nn.relu(fc_2)
# accuracy
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(output, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# loss
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=y))
# optimizer
optimizer = tf.train.AdamOptimizer(1e-4, beta1=0.9, beta2=0.999, epsilon=1e-8).minimize(loss)
return x, y, rate, accuracy, loss, optimizer
def one_hot_encoder(y):
ret = np.zeros(len(y) * 10)
ret = ret.reshape([-1, 10])
for i in range(len(y)):
ret[i][y[i]] = 1
return (ret)
def train(x_train, y_train, sess, x, y, rate, optimizer, accuracy, loss):
batch_size = 128
y_train_cls = one_hot_encoder(y_train)
start = end = 0
for i in range(int(len(x_train) / batch_size)):
if (i + 1) % 100 == 1:
start = timeit.default_timer()
batch_x = x_train[i * batch_size:(i + 1) * batch_size]
batch_y = y_train_cls[i * batch_size:(i + 1) * batch_size]
_, batch_loss, batch_accuracy = sess.run([optimizer, loss, accuracy], feed_dict={x:batch_x, y:batch_y, rate:0.4})
if (i + 1) % 100 == 0:
end = timeit.default_timer()
print("Time:", end-start, "s the loss is ", batch_loss, " and the accuracy is ", batch_accuracy * 100, "%")
def test(x_test, y_test, sess, x, y, rate, accuracy, loss):
batch_size = 64
y_test_cls = one_hot_encoder(y_test)
global_loss = 0
global_accuracy = 0
for t in range(int(len(x_test) / batch_size)):
batch_x = x_test[t * batch_size : (t + 1) * batch_size]
batch_y = y_test_cls[t * batch_size : (t + 1) * batch_size]
batch_loss, batch_accuracy = sess.run([loss, accuracy], feed_dict={x:batch_x, y:batch_y, rate:1})
global_loss += batch_loss
global_accuracy += batch_accuracy
global_loss = global_loss / (len(x_test) / batch_size)
global_accuracy = global_accuracy / (len(x_test) / batch_size)
print("In Test Time, loss is ", global_loss, ' and the accuracy is ', global_accuracy)
EPOCH = 100
(x_train, y_train), (x_test, y_test) = load_data()
print("There is ", len(x_train), " training images and ", len(x_test), " images")
x, y, rate, accuracy, loss, optimizer = model()
sess = tf.Session()
sess.run(tf.global_variables_initializer())
for i in range(EPOCH):
print("Train on epoch ", i ," start")
train(x_train, y_train, sess, x, y, rate, optimizer, accuracy, loss)
test(x_train, y_train, sess, x, y, rate, accuracy, loss)
tensorflow运行时错误:服务似乎挂掉了,但是会立刻重启的.的更多相关文章
- TensorFlow Serving-TensorFlow 服务
TensorFlow服务是一个用于服务机器学习模型的开源软件库.它处理机器学习的推断方面,在培训和管理他们的生命周期后采取模型,通过高性能,引用计数的查找表为客户端提供版本化访问. 可以同时提供多个模 ...
- linux 编写定时任务,查询服务是否挂掉
shell 脚本 #!/bin/bash a=`netstat -unltp|grep fdfs|wc -l` echo "$a" if [ "$a" -ne ...
- 平时服务正常,突然挂了,怎么重启都起不来,查看日志Insufficient space for shared memory file 内存文件空间不足
Java HotSpot(TM) 64-Bit Server VM warning: Insufficient space for shared memory file: /tmp/hsperfd ...
- nodejs-Cluster模块
JavaScript 标准参考教程(alpha) 草稿二:Node.js Cluster模块 GitHub TOP Cluster模块 来自<JavaScript 标准参考教程(alpha)&g ...
- 踩坑踩坑之Flask+ uWSGI + Tensorflow的Web服务部署
一.简介 作为算法开发人员,在算法模块完成后,拟部署Web服务以对外提供服务,从而将算法模型落地应用.本文针对首次基于Flask + uWSGI + Tensorflow + Nginx部署Web服务 ...
- Dubbo框架中的应用(两)--服务治理
Dubbo服务治理了看法 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGlzaGVoZQ==/font/5a6L5L2T/fontsize/400/fi ...
- 【深度解析】Google第二代深度学习引擎TensorFlow开源
作者:王嘉俊 王婉婷 TensorFlow 是 Google 第二代深度学习系统,今天宣布完全开源.TensorFlow 是一种编写机器学习算法的界面,也可以编译执行机器学习算法的代码.使用 Tens ...
- linux下监视进程 崩溃挂掉后自动重启的shell脚本
如何保证服务一直运行?如何保证即使服务挂掉了也能自动重启?在写服务程序时经常会碰到这样的问题.在Linux系统中,强大的shell就可以很灵活的处理这样的事务. 下面的shell通过一个while-d ...
- java 服务治理办法
在大规模服务化之前.应用可能仅仅是通过RMI或Hessian等工具.简单的暴露和引用远程服务,通过配置服务的URL地址进行调用.通过F5等硬件进行负载均衡. (1) 当服务越来越多时.服务URL配置管 ...
随机推荐
- vector的基本操作
vector怎么删除元素? #include<iostream> #include<vector> using namespace std; int main() { vect ...
- 【Comet OJ - Contest #0 A】解方程(数学水题)
点此看题面 大致题意: 给定自然数\(n\),让你求出方程\(\sqrt{x-\sqrt n}+\sqrt y-\sqrt z=0\)的自然数解\(x,y,z\)的数量以及所有解\(xyz\)之和. ...
- [HNOI2012]集合选数(构造,状态压缩,DP)
神仙题. 莫名其妙的就试一试把所有数放进一个类似矩阵的东西里面. 首先把 \(1\) 放到左上角,然后在每个数的右边放它的 \(3\) 倍(大于 \(n\) 就不用放了),下面放它的 \(2\) 倍( ...
- java ++前缀
public class Sample { public static void main(String[] args) { , num2 = ; , num4 = ; ++num1; System. ...
- Computing Science CMPT 361
Computing Science CMPT 361 Fall 2019Assignment #3Due date: November 27th at 11:59 pm.Ray TracingYou ...
- 详解golang net之netpoll
golang版本1.12.9:操作系统:readhat 7.4 golang的底层使用epoll来实现IO复用.netPoll通过pollDesc结构体将文件描述符与底层进行了绑定.netpoll实现 ...
- Cookie,Session,Token and Oauth
Cookie 服务器端生成,发送给客户端,保存用户信息.下一次请求同一网站时会把该cookie发送给服务器. 应用:登录表单自动填充,同样 随着交互式Web应用的兴起,像在线购物网站,需要登录的网站等 ...
- oracle查看执行计划入门
基于Oracle的应用系统很多的性能问题都是由应用系统的SQL性能低劣引起的,因此SQL的性能优化非常重要.要分析与优化SQL的性能,一般是通过查看该SQL的执行计划,然后通过执行计划有针对性地对SQ ...
- TensorFlow的数据读取机制
一.tensorflow读取机制图解 首先需要思考的一个问题是,什么是数据读取?以图像数据为例,读取的过程可以用下图来表示 假设我们的硬盘中有一个图片数据集0001.jpg,0002.jpg,0003 ...
- 有关 Table 获取Json 的解决方案
目录 写在前面 具体操作步骤 写在前面 在项目的开发过程中,我们使用最多的是表单的序列化.而有关以Table的序列化成Json的方法不太常见. 在做功能的时候发现,没有提交如何把Table序列化成Js ...