tensorflow运行时错误:服务似乎挂掉了,但是会立刻重启的.
以前在POD里跑起来,没问题的示例代码。
移到jupyter中,多给两个GPU,有时运行就会爆出这个错误:
于是,按网上的意见,暂时加了个使用GPU的指定,
暂时搞定。
如下红色部分。
import timeit import os import tensorflow as tf import numpy as np from tensorflow.keras.datasets.cifar10 import load_data os.environ['CUDA_VISIBLE_DEVICES'] = '0,1' def model(): x = tf.placeholder(tf.float32, shape=[None, 32, 32, 3]) y = tf.placeholder(tf.float32, shape=[None, 10]) rate = tf.placeholder(tf.float32) # convolutional layer 1 conv_1 = tf.layers.conv2d(x, 32, [3, 3], padding='SAME', activation=tf.nn.relu) max_pool_1 = tf.layers.max_pooling2d(conv_1, [2, 2], strides=2, padding='SAME') drop_1 = tf.layers.dropout(max_pool_1, rate=rate) # convolutional layer 2 conv_2 = tf.layers.conv2d(drop_1, 64, [3, 3], padding="SAME", activation=tf.nn.relu) max_pool_2 = tf.layers.max_pooling2d(conv_2, [2, 2], strides=2, padding="SAME") drop_2 = tf.layers.dropout(max_pool_2, rate=rate) # convolutional layers 3 conv_3 = tf.layers.conv2d(drop_2, 128, [3, 3], padding="SAME", activation=tf.nn.relu) max_pool_3 = tf.layers.max_pooling2d(conv_3, [2, 2], strides=2, padding="SAME") drop_3 = tf.layers.dropout(max_pool_3, rate=rate) # fully connected layer 1 flat = tf.reshape(drop_3, shape=[-1, 4 * 4 * 128]) fc_1 = tf.layers.dense(flat, 80, activation=tf.nn.relu) drop_4 = tf.layers.dropout(fc_1 , rate=rate) # fully connected layer 2 or the output layers fc_2 = tf.layers.dense(drop_4, 10) output = tf.nn.relu(fc_2) # accuracy correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(output, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # loss loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=y)) # optimizer optimizer = tf.train.AdamOptimizer(1e-4, beta1=0.9, beta2=0.999, epsilon=1e-8).minimize(loss) return x, y, rate, accuracy, loss, optimizer def one_hot_encoder(y): ret = np.zeros(len(y) * 10) ret = ret.reshape([-1, 10]) for i in range(len(y)): ret[i][y[i]] = 1 return (ret) def train(x_train, y_train, sess, x, y, rate, optimizer, accuracy, loss): batch_size = 128 y_train_cls = one_hot_encoder(y_train) start = end = 0 for i in range(int(len(x_train) / batch_size)): if (i + 1) % 100 == 1: start = timeit.default_timer() batch_x = x_train[i * batch_size:(i + 1) * batch_size] batch_y = y_train_cls[i * batch_size:(i + 1) * batch_size] _, batch_loss, batch_accuracy = sess.run([optimizer, loss, accuracy], feed_dict={x:batch_x, y:batch_y, rate:0.4}) if (i + 1) % 100 == 0: end = timeit.default_timer() print("Time:", end-start, "s the loss is ", batch_loss, " and the accuracy is ", batch_accuracy * 100, "%") def test(x_test, y_test, sess, x, y, rate, accuracy, loss): batch_size = 64 y_test_cls = one_hot_encoder(y_test) global_loss = 0 global_accuracy = 0 for t in range(int(len(x_test) / batch_size)): batch_x = x_test[t * batch_size : (t + 1) * batch_size] batch_y = y_test_cls[t * batch_size : (t + 1) * batch_size] batch_loss, batch_accuracy = sess.run([loss, accuracy], feed_dict={x:batch_x, y:batch_y, rate:1}) global_loss += batch_loss global_accuracy += batch_accuracy global_loss = global_loss / (len(x_test) / batch_size) global_accuracy = global_accuracy / (len(x_test) / batch_size) print("In Test Time, loss is ", global_loss, ' and the accuracy is ', global_accuracy) EPOCH = 100 (x_train, y_train), (x_test, y_test) = load_data() print("There is ", len(x_train), " training images and ", len(x_test), " images") x, y, rate, accuracy, loss, optimizer = model() sess = tf.Session() sess.run(tf.global_variables_initializer()) for i in range(EPOCH): print("Train on epoch ", i ," start") train(x_train, y_train, sess, x, y, rate, optimizer, accuracy, loss) test(x_train, y_train, sess, x, y, rate, accuracy, loss)
tensorflow运行时错误:服务似乎挂掉了,但是会立刻重启的.的更多相关文章
- TensorFlow Serving-TensorFlow 服务
TensorFlow服务是一个用于服务机器学习模型的开源软件库.它处理机器学习的推断方面,在培训和管理他们的生命周期后采取模型,通过高性能,引用计数的查找表为客户端提供版本化访问. 可以同时提供多个模 ...
- linux 编写定时任务,查询服务是否挂掉
shell 脚本 #!/bin/bash a=`netstat -unltp|grep fdfs|wc -l` echo "$a" if [ "$a" -ne ...
- 平时服务正常,突然挂了,怎么重启都起不来,查看日志Insufficient space for shared memory file 内存文件空间不足
Java HotSpot(TM) 64-Bit Server VM warning: Insufficient space for shared memory file: /tmp/hsperfd ...
- nodejs-Cluster模块
JavaScript 标准参考教程(alpha) 草稿二:Node.js Cluster模块 GitHub TOP Cluster模块 来自<JavaScript 标准参考教程(alpha)&g ...
- 踩坑踩坑之Flask+ uWSGI + Tensorflow的Web服务部署
一.简介 作为算法开发人员,在算法模块完成后,拟部署Web服务以对外提供服务,从而将算法模型落地应用.本文针对首次基于Flask + uWSGI + Tensorflow + Nginx部署Web服务 ...
- Dubbo框架中的应用(两)--服务治理
Dubbo服务治理了看法 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGlzaGVoZQ==/font/5a6L5L2T/fontsize/400/fi ...
- 【深度解析】Google第二代深度学习引擎TensorFlow开源
作者:王嘉俊 王婉婷 TensorFlow 是 Google 第二代深度学习系统,今天宣布完全开源.TensorFlow 是一种编写机器学习算法的界面,也可以编译执行机器学习算法的代码.使用 Tens ...
- linux下监视进程 崩溃挂掉后自动重启的shell脚本
如何保证服务一直运行?如何保证即使服务挂掉了也能自动重启?在写服务程序时经常会碰到这样的问题.在Linux系统中,强大的shell就可以很灵活的处理这样的事务. 下面的shell通过一个while-d ...
- java 服务治理办法
在大规模服务化之前.应用可能仅仅是通过RMI或Hessian等工具.简单的暴露和引用远程服务,通过配置服务的URL地址进行调用.通过F5等硬件进行负载均衡. (1) 当服务越来越多时.服务URL配置管 ...
随机推荐
- Xamarin.Forms移动开发系列2:创建和调试
摘要 本文将介绍如何通过VS2019创建Xamarin.Forms应用程序,以及如何进行调试. 前言 本文介绍Xamarin.Froms应用程序的创建和调试. 开发环境 1.Visual Studio ...
- 洛谷 P1950 长方形_NOI导刊2009提高(2)
传送门 思路 首先定义\(h\)数组,\(h[i][j]\)表示第\(i\)行第\(j\)列最多可以向上延伸多长(直到一个被用过的格子) 然后使用单调栈算出 \(l_i\)和 \(r_i\) ,分别是 ...
- B1020 月饼(25分)
#include<cstdio> #include<algorithm> #include<iostream> using namespace std; struc ...
- Linux性能优化实战学习笔记:第三十六讲
一.上节总结回顾 上一节,我们回顾了经典的 C10K 和 C1000K 问题.简单回顾一下,C10K 是指如何单机同时处理 1 万个请求(并发连接 1 万)的问题,而 C1000K 则是单机支持处理 ...
- Linux性能优化实战学习笔记:第四十四讲
一.上节回顾 上一节,我们学了网络性能优化的几个思路,我先带你简单复习一下. 在优化网络的性能时,你可以结合 Linux 系统的网络协议栈和网络收发流程,然后从应用程序.套接字.传输层.网络层再到链路 ...
- for...in 、for...of 、forEach 的区别
无论是for…in还是for…of语句都是迭代一些东西.它们之间的主要区别在于它们的迭代方式. 1.for…in 语句以原始插入顺序迭代对象的可枚举属性.2.for…of 语句遍历可迭代对象定义要迭代 ...
- (十三)golang--程序流程控制
1.顺序控制 若没有判断,没有跳转,程序由上至下依次执行 2.分支控制 单分支if 条件表达式 { 执行代码块} 双分支if 条件表达式 { 执行代码块1} else { 执行代码块2} 多分支if ...
- Debug 路漫漫-11:Python: TypeError: 'generator' object is not subscriptable
调试程序,出现以下错误: Python: TypeError: 'generator' object is not subscriptable “在Python中,这种一边循环一边计算的机制,称为生成 ...
- No package python-pip available. 解决方法
问题描述: No package python-pip available. 解决办法: rpm -ivh http://dl.fedoraproject.org/pub/epel/6/i386/ep ...
- apache启动错误 AH00072
错误描述: make_sock: could not bind to address [::]:443 G:\Apache24\bin>httpd.exe -w -n "Apache2 ...