以前在POD里跑起来,没问题的示例代码。

移到jupyter中,多给两个GPU,有时运行就会爆出这个错误:

于是,按网上的意见,暂时加了个使用GPU的指定,

暂时搞定。

如下红色部分。

import timeit
import os
import tensorflow as tf
import numpy as np
from tensorflow.keras.datasets.cifar10 import load_data

os.environ['CUDA_VISIBLE_DEVICES'] = '0,1'

def model():
    x = tf.placeholder(tf.float32, shape=[None, 32, 32, 3])
    y = tf.placeholder(tf.float32, shape=[None, 10])
    rate = tf.placeholder(tf.float32)
    # convolutional layer 1
    conv_1 = tf.layers.conv2d(x, 32, [3, 3], padding='SAME', activation=tf.nn.relu)
    max_pool_1 = tf.layers.max_pooling2d(conv_1, [2, 2], strides=2, padding='SAME')
    drop_1 = tf.layers.dropout(max_pool_1, rate=rate)
    # convolutional layer 2
    conv_2 = tf.layers.conv2d(drop_1, 64, [3, 3], padding="SAME", activation=tf.nn.relu)
    max_pool_2 = tf.layers.max_pooling2d(conv_2, [2, 2], strides=2, padding="SAME")
    drop_2 = tf.layers.dropout(max_pool_2, rate=rate)
    # convolutional layers 3
    conv_3 = tf.layers.conv2d(drop_2, 128, [3, 3], padding="SAME", activation=tf.nn.relu)
    max_pool_3 = tf.layers.max_pooling2d(conv_3, [2, 2], strides=2, padding="SAME")
    drop_3 = tf.layers.dropout(max_pool_3, rate=rate)
    # fully connected layer 1
    flat = tf.reshape(drop_3, shape=[-1, 4 * 4 * 128])
    fc_1 = tf.layers.dense(flat, 80, activation=tf.nn.relu)
    drop_4 = tf.layers.dropout(fc_1 , rate=rate)
    # fully connected layer 2 or the output layers
    fc_2 = tf.layers.dense(drop_4, 10)
    output = tf.nn.relu(fc_2)
    # accuracy
    correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(output, 1))
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
    # loss
    loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=y))
    # optimizer
    optimizer = tf.train.AdamOptimizer(1e-4, beta1=0.9, beta2=0.999, epsilon=1e-8).minimize(loss)
    return x, y, rate, accuracy, loss, optimizer

def one_hot_encoder(y):
    ret = np.zeros(len(y) * 10)
    ret = ret.reshape([-1, 10])
    for i in range(len(y)):
        ret[i][y[i]] = 1
    return (ret)

def train(x_train, y_train, sess, x, y, rate, optimizer, accuracy, loss):
    batch_size = 128
    y_train_cls = one_hot_encoder(y_train)
    start = end = 0
    for i in range(int(len(x_train) / batch_size)):
        if (i + 1) % 100 == 1:
            start = timeit.default_timer()
        batch_x = x_train[i * batch_size:(i + 1) * batch_size]
        batch_y = y_train_cls[i * batch_size:(i + 1) * batch_size]
        _, batch_loss, batch_accuracy = sess.run([optimizer, loss, accuracy], feed_dict={x:batch_x, y:batch_y, rate:0.4})
        if (i + 1) % 100 == 0:
            end = timeit.default_timer()
            print("Time:", end-start, "s the loss is ", batch_loss, " and the accuracy is ", batch_accuracy * 100, "%")

def test(x_test, y_test, sess, x, y, rate, accuracy, loss):
    batch_size = 64
    y_test_cls = one_hot_encoder(y_test)
    global_loss = 0
    global_accuracy = 0
    for t in range(int(len(x_test) / batch_size)):
        batch_x = x_test[t * batch_size : (t + 1) * batch_size]
        batch_y = y_test_cls[t * batch_size : (t + 1) * batch_size]
        batch_loss, batch_accuracy = sess.run([loss, accuracy], feed_dict={x:batch_x, y:batch_y, rate:1})
        global_loss += batch_loss
        global_accuracy += batch_accuracy
    global_loss = global_loss / (len(x_test) / batch_size)
    global_accuracy = global_accuracy / (len(x_test) / batch_size)
    print("In Test Time, loss is ", global_loss, ' and the accuracy is ', global_accuracy)

EPOCH = 100
(x_train, y_train), (x_test, y_test) = load_data()
print("There is ", len(x_train), " training images and ", len(x_test), " images")
x, y, rate, accuracy, loss, optimizer = model()
sess = tf.Session()
sess.run(tf.global_variables_initializer())

for i in range(EPOCH):
    print("Train on epoch ", i ," start")
    train(x_train, y_train, sess, x, y, rate, optimizer, accuracy, loss)
    test(x_train, y_train, sess, x, y, rate, accuracy, loss)

tensorflow运行时错误:服务似乎挂掉了,但是会立刻重启的.的更多相关文章

  1. TensorFlow Serving-TensorFlow 服务

    TensorFlow服务是一个用于服务机器学习模型的开源软件库.它处理机器学习的推断方面,在培训和管理他们的生命周期后采取模型,通过高性能,引用计数的查找表为客户端提供版本化访问. 可以同时提供多个模 ...

  2. linux 编写定时任务,查询服务是否挂掉

    shell 脚本 #!/bin/bash a=`netstat -unltp|grep fdfs|wc -l` echo "$a" if [ "$a" -ne ...

  3. 平时服务正常,突然挂了,怎么重启都起不来,查看日志Insufficient space for shared memory file 内存文件空间不足

    Java HotSpot(TM) 64-Bit Server VM warning: Insufficient space for shared memory file:   /tmp/hsperfd ...

  4. nodejs-Cluster模块

    JavaScript 标准参考教程(alpha) 草稿二:Node.js Cluster模块 GitHub TOP Cluster模块 来自<JavaScript 标准参考教程(alpha)&g ...

  5. 踩坑踩坑之Flask+ uWSGI + Tensorflow的Web服务部署

    一.简介 作为算法开发人员,在算法模块完成后,拟部署Web服务以对外提供服务,从而将算法模型落地应用.本文针对首次基于Flask + uWSGI + Tensorflow + Nginx部署Web服务 ...

  6. Dubbo框架中的应用(两)--服务治理

    Dubbo服务治理了看法 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvbGlzaGVoZQ==/font/5a6L5L2T/fontsize/400/fi ...

  7. 【深度解析】Google第二代深度学习引擎TensorFlow开源

    作者:王嘉俊 王婉婷 TensorFlow 是 Google 第二代深度学习系统,今天宣布完全开源.TensorFlow 是一种编写机器学习算法的界面,也可以编译执行机器学习算法的代码.使用 Tens ...

  8. linux下监视进程 崩溃挂掉后自动重启的shell脚本

    如何保证服务一直运行?如何保证即使服务挂掉了也能自动重启?在写服务程序时经常会碰到这样的问题.在Linux系统中,强大的shell就可以很灵活的处理这样的事务. 下面的shell通过一个while-d ...

  9. java 服务治理办法

    在大规模服务化之前.应用可能仅仅是通过RMI或Hessian等工具.简单的暴露和引用远程服务,通过配置服务的URL地址进行调用.通过F5等硬件进行负载均衡. (1) 当服务越来越多时.服务URL配置管 ...

随机推荐

  1. Linux--部署Django项目

    简单部署 1.安装虚拟环境virtualenvwrapper,创建虚拟环境目录,进入虚拟环境,我的虚拟环境目录叫venv2 [root@HH ~]# workon venv2 (venv2) [roo ...

  2. 怎么删除STL容器的元素

    在STL容器有顺序容器和关联容器两种. 顺序容器删除元素的方法有两种: 1.c.erase(p) 从c中删除迭代器p指定的元素.p必须指向c中一个真实元素,不能等于c.end().返回一个指向p之后元 ...

  3. mission3--dp

    A---母牛的故事 题目大意:第一年有一头母牛,每年年初母牛生小母牛,小母牛第四个年头可以开始生小牛. 问第n年有多少头牛. 题解: (1)列出前几项来找规律(2)第i年牛的数量=第i-1年牛的数量+ ...

  4. [THUPC2018]弗雷兹的玩具商店(线段树,背包)

    最近状态有点颓,刷刷水题找找自信. 首先每次询问就是完全背包.可以 $O(m^2)$. 由于每个物品都可以用无数次,所以对于价格相同的物品,我们只用考虑愉悦度最高的. 直接上线段树.$val[i]$ ...

  5. Codeforces Round #606 (Div. 1) Solution

    从这里开始 比赛目录 我菜爆了. Problem A As Simple as One and Two 我会 AC 自动机上 dp. one 和 two 删掉中间的字符,twone 删掉中间的 o. ...

  6. AtCoder Grand Contest 039 简要题解

    从这里开始 比赛目录 Problem A Connection and Disconnection 简单讨论即可. Code #include <bits/stdc++.h> using ...

  7. Java一个简单的重试工具包

    在接口调用中由于各种原因,可能会重置失败的任务,使用Guava-Retrying可以方便的实现重试功能. 首先,需要引用Guava-Retrying的包 <dependency> < ...

  8. python 属性描述符

    import numbers class IntField: # 一个类只要实现了这个魔法函数,那么它就是属性描述符 #数据描述符 def __get__(self, instance, owner) ...

  9. C/C++ 随笔目录

    [1]基础部分 (1)宏定义 <assert> <offset宏> <#pragma once> <宏定义学习> <预处理语句> <# ...

  10. scala中nothing和null的区别

    1:nothing是所有类型的子类,他没有具体的实例对象,常见的应用:抛出异常.程序exit.无线循环等. 2:nothing是所有类型的子类,也是null的子类,nothing没有对象,但是可以用来 ...