数论(7):康托展开&逆康托展开
康托展开可以用来求一个 \(1\sim n\) 的任意排列的排名。
什么是排列的排名?
把 \(1\sim n\) 的所有排列按字典序排序,这个排列的位次就是它的排名。
时间复杂度?
康托展开可以在 \(O(n^2)\) 的复杂度内求出一个排列的排名,在用到树状数组优化时可以做到 \(O(n\log n)\) 。
怎么实现?
因为排列是按字典序排名的,因此越靠前的数字优先级越高。也就是说如果两个排列的某一位之前的数字都相同,那么如果这一位如果不相同,就按这一位排序。
比如 \(4\) 的排列, \([2,3,1,4]<[2,3,4,1]\) ,因为在第 \(3\) 位出现不同,则 \([2,3,1,4]\) 的排名在 \([2,3,4,1]\) 前面。
举个栗子
我们知道长为 \(5\) 的排列 \([2,5,3,4,1]\) 大于以 \(1\) 为第一位的任何排列,以 \(1\) 为第一位的 \(5\) 的排列有 \(4!\) 种。这是非常好理解的。但是我们对第二位的 \(5\) 而言,它大于 第一位与这个排列相同的,而这一位比 \(5\) 小的 所有排列。不过我们要注意的是,这一位不仅要比 \(5\) 小,还要满足没有在当前排列的前面出现过,不然统计就重复了。因此这一位为 \(1,3\) 或 \(4\) ,第一位为 \(2\) 的所有排列都比它要小,数量为 \(3\times 3!\) 。
按照这样统计下去,答案就是 \(1+4!+3\times 3!+2!+1=46\) 。注意我们统计的是排名,因此最前面要 \(+1\) 。
注意到我们每次要用到 当前有多少个小于它的数还没有出现 ,这里用树状数组统计比它小的数出现过的次数就可以了。
原理总结:
(A[i]表示在位置i后比位置i上数小的数的个数)
\]
- 注意到我们每次要用到 当前有多少个小于它的数还没有出现
- 这里用树状数组统计比它小的数出现过的次数就可以了,可以优化到
O(nlogn)
代码
先预处理阶乘:
void init(){
fact[0] = 1;
for(int i = 2;i <= 9; ++i) fact[i] = fact[i - 1] * i;
//递推求阶乘
}
//或者直接打表
int fact[10] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880};
\(cantor\) 函数
int cantor(int a[],int n){
int ans = 0;
for(int i = 0;i < n; ++i){
int cnt = 0;
for(int j = i + ;j < n; ++j)++cnt;
// 找到a[i]是当前数列中未出现的数中第几小的
// 从1开始,即1-n的全排列
// 从0开始,就变成了0-n的全排列,记得变通
ans += cnt * fact[n - i - 1];
}
return ans + 1;//如果输出的是排名就要 + 1,如果是hash值可以直接返回 ans
}
逆康托展开
而逆康托展开相当于,反过来操作
因为排列的排名和排列是一一对应的,所以康托展开满足双射关系,是可逆的。可以通过类似上面的过程倒推回来。
如果我们知道一个排列的排名,就可以推出这个排列。因为 \(4!\) 是严格大于 \(3\times 3!+2\times 2!+1\times 1!\) 的,所以可以认为对于长度为 \(5\) 的排列,排名 \(x\) 除以 \(4!\) 向下取整就是有多少个数小于这个排列的第一位。
引用上面展开的例子
首先让 \(46-1=45\) , \(45\) 代表着有多少个排列比这个排列小。 \(\lfloor\frac {45}{4!}\rfloor=1\) ,有一个数小于它,所以第一位是 \(2\) 。
此时让排名减去 \(1\times 4!\) 得到 \(21\) , \(\lfloor\frac {21}{3!}\rfloor=3\) ,有 \(3\) 个数小于它,去掉已经存在的 \(2\) ,这一位是 \(5\) 。
\(21-3\times 3!=3\) , \(\lfloor\frac {3}{2!}\rfloor=1\) ,有一个数小于它,那么这一位就是 \(3\) 。
让 \(3-1\times 2!=1\) ,有一个数小于它,这一位是剩下来的第二位, \(4\) ,剩下一位就是 \(1\) 。即 \([2,5,3,4,1]\) 。
实际上我们得到了形如 有两个数小于它 这一结论,就知道它是当前第 \(3\) 个没有被选上的数,这里也可以用线段树维护,时间复杂度为 \(O(n\log n)\) 。
代码
vector<int> incantor(int x,int n){
x--;//得到从0开始的排名
vector<int> res(n); //保存数列答案
int cnt;
bool st[10]; //标记数组
memset(st,false,sizeof st);
for(int i = 0;i < n; ++i){
cnt = x / fact[n - i - 1]; // 比a[i]小且没有出现过的数的个数
x %= fact[n - i - 1]; //更新 x
for(int j = 1; j <= n; ++j){// 找到a[i],从1开始向后找
if(st[j]) continue; // 如果被标记过,就跳过
if(!cnt){ // 如果cnt == 0说明当前数是a[i]
st[j] = 1; //标记
res[i] = j; // 第i位是j
break;
}
cnt--; // 如果当前不是0,就继续往后找
}
}
return res;// 返回答案
}
数论(7):康托展开&逆康托展开的更多相关文章
- 康托展开&逆康托展开学习笔记
啊...好久没写了...可能是最后一篇学习笔记了吧 题目大意:给定序列求其在全排列中的排名&&给定排名求排列. 这就是康托展开&&逆康托展开要干的事了.下面依次介绍 一 ...
- 康拓展开 & 逆康拓展开 知识总结(树状数组优化)
康拓展开 : 康拓展开,难道他是要飞翔吗?哈哈,当然不是了,康拓具体是哪位大叔,我也不清楚,重要的是 我们需要用到它后面的展开,提到展开,与数学相关的,肯定是一个式子或者一个数进行分解,即 展开. 到 ...
- LightOJ1060 nth Permutation(不重复全排列+逆康托展开)
一年多前遇到差不多的题目http://acm.fafu.edu.cn/problem.php?id=1427. 一开始我还用搜索..后来那时意外找到一个不重复全排列的计算公式:M!/(N1!*N2!* ...
- nyoj 139——我排第几个|| nyoj 143——第几是谁? 康托展开与逆康托展开
讲解康托展开与逆康托展开.http://wenku.baidu.com/view/55ebccee4afe04a1b071deaf.html #include<bits/stdc++.h> ...
- 题解报告:NYOJ 题目143 第几是谁?(逆康托展开)
描述 现在有"abcdefghijkl”12个字符,将其按字典序排列,如果给出任意一种排列,我们能说出这个排列在所有的排列中是第几小的.但是现在我们给出它是第几小,需要你求出它所代表的序列. ...
- HDU1027 Ignatius and the Princess II( 逆康托展开 )
链接:传送门 题意:给出一个 n ,求 1 - n 全排列的第 m 个排列情况 思路:经典逆康托展开,需要注意的时要在原来逆康托展开的模板上改动一些地方. 分析:已知 1 <= M <= ...
- Codeforces-121C(逆康托展开)
题目大意: 给你两个数n,k求n的全排列的第k小,有多少满足如下条件的数: 首先定义一个幸运数字:只由4和7构成 对于排列p[i]满足i和p[i]都是幸运数字 思路: 对于n,k<=1e9 一眼 ...
- 康托展开+逆展开(Cantor expension)详解+优化
康托展开 引入 康托展开(Cantor expansion)用于将排列转换为字典序的索引(逆展开则相反) 百度百科 维基百科 方法 假设我们要求排列 5 2 4 1 3 的字典序索引 逐位处理: 第一 ...
- CDOJ 485 UESTC 485 Game (八数码变形,映射,逆cantor展开)
题意:八数码,但是转移的方式是转动,一共十二种,有多组询问,初态唯一,终态不唯一. 题解:初态唯一,那么可以预处理出012345678的所有转移情况,然后将初态对012345678做一个映射,再枚举一 ...
- hdu 1027 Ignatius and the Princess II(正、逆康托)
题意: 给N和M. 输出1,2,...,N的第M大全排列. 思路: 将M逆康托,求出a1,a2,...aN. 看代码. 代码: int const MAXM=10000; int fac[15]; i ...
随机推荐
- MySQL-mysqldump 报错:[ERROR] unknown variable 'local_infile=1'.
版权声明:原创作品,谢绝转载!否则将追究法律责任. ----- 作者:kirin mysqldump: [ERROR] unknown variable 'local_infile=1'. 解决方法: ...
- Eclipse 安装 ABAP 插件报错 Microsoft Visual C++ 2013 (x64) 快速解决
去官网下载Microsoft Visual C++ 2013 (x64) 安装 Download Visual C++ Redistributable Packages for Visual St ...
- 生成模型的两大代表:VAE和GAN
生成模型 给定数据集,希望生成模型产生与训练集同分布的新样本.对于训练数据服从\(p_{data}(x)\):对于产生样本服从\(p_{model}(x)\).希望学到一个模型\(p_{model}( ...
- CICD实践1:环境安装篇
一.CICD技术选型 配置管理工具 工具 需求管理工具 使用禅道 代码管理工具 使用Gitlab 编译构建工具 搭建Jenkins,使用Jenkinsfile 制品库工具 nexus 文档管理工具 C ...
- 汽车制造业PMC组态应用最佳实践
01 案例及行业介绍 汽车制造工业是我国国民经济的重要支柱产业,汽车制造工厂一般包含冲压.焊装.涂装.总装四大车间.每辆汽车的生产过程被分解成很多加工任务下发给各个车间进行完成.车辆从冲压车间开始到总 ...
- MySQL运维实战(1.2)安装部署:使用二进制安装部署
作者:俊达 引言 上一篇我们使用了RPM进行安装部署,这是一种安装快速.简化部署和管理过程.与操作系统提供的包管理工具紧密集成的部署方法.此外,当你需要更高的灵活性和自定义性,并且愿意承担一些额外的手 ...
- Numpy计算近邻表时间对比
技术背景 所谓的近邻表求解,就是给定N个原子的体系,找出满足cutoff要求的每一对原子.在前面的几篇博客中,我们分别介绍过CUDA近邻表计算与JAX-MD关于格点法求解近邻表的实现.虽然我们从理论上 ...
- 常用的 SQL
只知道字段名字查找表 SELECT table_name FROM information_schema.columns WHERE column_name = '字段名'; 查看不等于NULL的数据 ...
- Quartz.Net系列(十八):Quartz.Net中通过SQLServer实现对Job、Trigger持久化存储
1.介绍 RAMJobStore:一但关闭应用程序,数据全部丢失 Quartz中提供了两种方式配置数据库 JobStoreTx:带有事务的 JobStoreCMT:不带事务的
- 史上最强DIY,手工制作一只会说话的机器狗
摘要:波士顿动力的机器狗,想要么?快来跟我一起动手制作吧. 波士顿动力的机器狗了解吗? 一个会后空翻.会开门.会爬楼梯的AI. 最近,我们实验室就来了一批mini版的机器狗,虽然不会各种高难度杂技动作 ...