康托展开可以用来求一个 \(1\sim n\) 的任意排列的排名。

什么是排列的排名?

把 \(1\sim n\) 的所有排列按字典序排序,这个排列的位次就是它的排名。

时间复杂度?

康托展开可以在 \(O(n^2)\) 的复杂度内求出一个排列的排名,在用到树状数组优化时可以做到 \(O(n\log n)\) 。

怎么实现?

因为排列是按字典序排名的,因此越靠前的数字优先级越高。也就是说如果两个排列的某一位之前的数字都相同,那么如果这一位如果不相同,就按这一位排序。

比如 \(4\) 的排列, \([2,3,1,4]<[2,3,4,1]\) ,因为在第 \(3\) 位出现不同,则 \([2,3,1,4]\) 的排名在 \([2,3,4,1]\) 前面。

举个栗子

我们知道长为 \(5\) 的排列 \([2,5,3,4,1]\) 大于以 \(1\) 为第一位的任何排列,以 \(1\) 为第一位的 \(5\) 的排列有 \(4!\) 种。这是非常好理解的。但是我们对第二位的 \(5\) 而言,它大于 第一位与这个排列相同的,而这一位比 \(5\) 小的 所有排列。不过我们要注意的是,这一位不仅要比 \(5\) 小,还要满足没有在当前排列的前面出现过,不然统计就重复了。因此这一位为 \(1,3\) 或 \(4\) ,第一位为 \(2\) 的所有排列都比它要小,数量为 \(3\times 3!\) 。

按照这样统计下去,答案就是 \(1+4!+3\times 3!+2!+1=46\) 。注意我们统计的是排名,因此最前面要 \(+1\) 。

注意到我们每次要用到 当前有多少个小于它的数还没有出现 ,这里用树状数组统计比它小的数出现过的次数就可以了。

原理总结:

\[X = A[0] * (n-1)! + A[1] * (n-2)! + … + A[n-1] * 0!\\
(A[i]表示在位置i后比位置i上数小的数的个数)
\]
  • 注意到我们每次要用到 当前有多少个小于它的数还没有出现
  • 这里用树状数组统计比它小的数出现过的次数就可以了,可以优化到 O(nlogn)

代码

先预处理阶乘:

void init(){
fact[0] = 1;
for(int i = 2;i <= 9; ++i) fact[i] = fact[i - 1] * i;
//递推求阶乘
}
//或者直接打表
int fact[10] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880};

\(cantor\) 函数

int cantor(int a[],int n){
int ans = 0;
for(int i = 0;i < n; ++i){
int cnt = 0;
for(int j = i + ;j < n; ++j)++cnt;
// 找到a[i]是当前数列中未出现的数中第几小的
// 从1开始,即1-n的全排列
// 从0开始,就变成了0-n的全排列,记得变通
ans += cnt * fact[n - i - 1];
}
return ans + 1;//如果输出的是排名就要 + 1,如果是hash值可以直接返回 ans
}

逆康托展开

而逆康托展开相当于,反过来操作

因为排列的排名和排列是一一对应的,所以康托展开满足双射关系,是可逆的。可以通过类似上面的过程倒推回来。

如果我们知道一个排列的排名,就可以推出这个排列。因为 \(4!\) 是严格大于 \(3\times 3!+2\times 2!+1\times 1!\) 的,所以可以认为对于长度为 \(5\) 的排列,排名 \(x\) 除以 \(4!\) 向下取整就是有多少个数小于这个排列的第一位。

引用上面展开的例子

首先让 \(46-1=45\) , \(45\) 代表着有多少个排列比这个排列小。 \(\lfloor\frac {45}{4!}\rfloor=1\) ,有一个数小于它,所以第一位是 \(2\) 。

此时让排名减去 \(1\times 4!\) 得到 \(21\) , \(\lfloor\frac {21}{3!}\rfloor=3\) ,有 \(3\) 个数小于它,去掉已经存在的 \(2\) ,这一位是 \(5\) 。

\(21-3\times 3!=3\) , \(\lfloor\frac {3}{2!}\rfloor=1\) ,有一个数小于它,那么这一位就是 \(3\) 。

让 \(3-1\times 2!=1\) ,有一个数小于它,这一位是剩下来的第二位, \(4\) ,剩下一位就是 \(1\) 。即 \([2,5,3,4,1]\) 。

实际上我们得到了形如 有两个数小于它 这一结论,就知道它是当前第 \(3\) 个没有被选上的数,这里也可以用线段树维护,时间复杂度为 \(O(n\log n)\) 。

代码

vector<int> incantor(int x,int n){
x--;//得到从0开始的排名
vector<int> res(n); //保存数列答案
int cnt;
bool st[10]; //标记数组
memset(st,false,sizeof st);
for(int i = 0;i < n; ++i){
cnt = x / fact[n - i - 1]; // 比a[i]小且没有出现过的数的个数
x %= fact[n - i - 1]; //更新 x
for(int j = 1; j <= n; ++j){// 找到a[i],从1开始向后找
if(st[j]) continue; // 如果被标记过,就跳过
if(!cnt){ // 如果cnt == 0说明当前数是a[i]
st[j] = 1; //标记
res[i] = j; // 第i位是j
break;
}
cnt--; // 如果当前不是0,就继续往后找
}
}
return res;// 返回答案
}

数论(7):康托展开&逆康托展开的更多相关文章

  1. 康托展开&逆康托展开学习笔记

    啊...好久没写了...可能是最后一篇学习笔记了吧 题目大意:给定序列求其在全排列中的排名&&给定排名求排列. 这就是康托展开&&逆康托展开要干的事了.下面依次介绍 一 ...

  2. 康拓展开 & 逆康拓展开 知识总结(树状数组优化)

    康拓展开 : 康拓展开,难道他是要飞翔吗?哈哈,当然不是了,康拓具体是哪位大叔,我也不清楚,重要的是 我们需要用到它后面的展开,提到展开,与数学相关的,肯定是一个式子或者一个数进行分解,即 展开. 到 ...

  3. LightOJ1060 nth Permutation(不重复全排列+逆康托展开)

    一年多前遇到差不多的题目http://acm.fafu.edu.cn/problem.php?id=1427. 一开始我还用搜索..后来那时意外找到一个不重复全排列的计算公式:M!/(N1!*N2!* ...

  4. nyoj 139——我排第几个|| nyoj 143——第几是谁? 康托展开与逆康托展开

    讲解康托展开与逆康托展开.http://wenku.baidu.com/view/55ebccee4afe04a1b071deaf.html #include<bits/stdc++.h> ...

  5. 题解报告:NYOJ 题目143 第几是谁?(逆康托展开)

    描述 现在有"abcdefghijkl”12个字符,将其按字典序排列,如果给出任意一种排列,我们能说出这个排列在所有的排列中是第几小的.但是现在我们给出它是第几小,需要你求出它所代表的序列. ...

  6. HDU1027 Ignatius and the Princess II( 逆康托展开 )

    链接:传送门 题意:给出一个 n ,求 1 - n 全排列的第 m 个排列情况 思路:经典逆康托展开,需要注意的时要在原来逆康托展开的模板上改动一些地方. 分析:已知 1 <= M <= ...

  7. Codeforces-121C(逆康托展开)

    题目大意: 给你两个数n,k求n的全排列的第k小,有多少满足如下条件的数: 首先定义一个幸运数字:只由4和7构成 对于排列p[i]满足i和p[i]都是幸运数字 思路: 对于n,k<=1e9 一眼 ...

  8. 康托展开+逆展开(Cantor expension)详解+优化

    康托展开 引入 康托展开(Cantor expansion)用于将排列转换为字典序的索引(逆展开则相反) 百度百科 维基百科 方法 假设我们要求排列 5 2 4 1 3 的字典序索引 逐位处理: 第一 ...

  9. CDOJ 485 UESTC 485 Game (八数码变形,映射,逆cantor展开)

    题意:八数码,但是转移的方式是转动,一共十二种,有多组询问,初态唯一,终态不唯一. 题解:初态唯一,那么可以预处理出012345678的所有转移情况,然后将初态对012345678做一个映射,再枚举一 ...

  10. hdu 1027 Ignatius and the Princess II(正、逆康托)

    题意: 给N和M. 输出1,2,...,N的第M大全排列. 思路: 将M逆康托,求出a1,a2,...aN. 看代码. 代码: int const MAXM=10000; int fac[15]; i ...

随机推荐

  1. python01-基础概念与环境搭建

    学习目标 了解硬件 & 操作系统 & 软件(应用系统)之间的关系. 了解常见的操作系统都有哪些. 了解编译器和解释器的区别和作用. 了解编程语言进行分类 了解Python解释器的种类 ...

  2. HBuilderx 创建 、运行uniapp项目

    uni-app官网介绍的 通过 HBuilderX 可视化界面 跟着小颖来创建一个自己的小程序 创建小程序 依次点击HBuilderx 左上方的按钮:文件->新建->项目 然后打开该界面, ...

  3. 【Java】Java中StringBuilder()成员方法append()和toString()

    StringBuilder就相当于C++的String长度可变,用于构造字符串对象,内部使用自动扩容的数组操作字符串数据. StringBuilder和StringBuffer使用的是相同的API[区 ...

  4. String.trim()含义

    就是去除两端空格,目前只用到了这个.

  5. 大语言模型底层架构丨带你认识Transformer

    本文分享自华为云社区<大语言模型底层架构你了解多少?大语言模型底层架构之一Transfomer的介绍和python代码实现>,作者: 码上开花_Lancer . 语言模型目标是建模自然语言 ...

  6. MCube动态化与原生工程结合最佳实践

    跨端动态化开发方案重要性日益凸显,本文对我们团队MCube动态化实践做了总结,为大家提供经验和借鉴. 接入背景 随着我们工程的需求迭代,暴露出了业务需求量大,分端开发和发版更新成本高等痛点,使用H5页 ...

  7. 吉特日化MES系统--通过浏览器调用标签打印

    三年来做制造行业,差不多做了近30个工厂,也由纯软件转入到了大量的硬件对接,包含厂房设计(这个目前还只是小菜鸟),硬件设计(只是提提意见),安装实施调试(软件和硬件撕逼操作),当然面向的对象也由计算机 ...

  8. [ABC262C] Min Max Pair

    Problem Statement You are given a sequence $a = (a_1, \dots, a_N)$ of length $N$ consisting of integ ...

  9. UMP系统功能

    1.容灾: 主库发生故障,执行从库 主从切换: 主库恢复:(切换过程中有短暂的不可用) 2.读写分离 3.分库分表: 当采用分库分表时,系统处理用户查询的过程如下: 4.资源管理: 具体的MySQL实 ...

  10. C++ Qt开发:Slider滑块条组件

    Qt 是一个跨平台C++图形界面开发库,利用Qt可以快速开发跨平台窗体应用程序,在Qt中我们可以通过拖拽的方式将不同组件放到指定的位置,实现图形化开发极大的方便了开发效率,本章将重点介绍Slider滑 ...