递归+DP:爬楼梯问题
输入格式:
首先输入数字n,代表接下来有n组输入,50>=n>=0,然后每行一个数字,代表台阶数,数字为小于60的整数
输出格式:
对每一组输入,输出青蛙的跳法。
输入样例:
3
1
2
3
1
思路:爬楼梯的方法就是一个斐波那契数列,因为假设最后一步可以跳一次,可以跳两次,那么之前的次数就是相应的F[N-1],F[N-2].所以可以使用递归:
1 int climbStairs(int n) {
2
3 if(n==1||n==2){
4
5 return n;
6
7 }
8
9 return climbStairs(n-1)+climbStairs(n-2);
10
11 }
动态规划问题:采用与斐波那契数列相同的做法,不难发现,这个问题可以被分解为一些包含最优子结构的子问题,即它的最优解可以从其子问题的最优解来有效地构建,我们可以使用动态规划来解决这一问题。
1 int climbStairs(int n)
2 {
3 int* iteration;
4 iteration = (int *)malloc(sizeof(int) * n);
5 for (int i = 0; i < n; i++)
6 {
7 iteration[i] = 0;
8 }
9
10 iteration[1] = 1;
11 iteration[2] = 2;
12 int i = 3;
13 while (i < n + 1)
14 {
15 iteration[i] = iteration[i - 1] + iteration[i - 2];
16 i++;
17 }
18 return iteration[n];
19 }
这样时间复杂度是O(N)就可以通过测试。
递归+DP:爬楼梯问题的更多相关文章
- Leetcode题目70.爬楼梯(动态规划+递归-简单)
题目描述: 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 ...
- 递归--练习1--noi3089爬楼梯
递归--练习1--noi3089爬楼梯 一.心得 根据输入,是要写连续输入多个值的程序 二.题目 3089:爬楼梯 总时间限制: 1000ms 内存限制: 65536kB 描述 树老师爬楼梯,他可 ...
- Leetcode之动态规划(DP)专题-746. 使用最小花费爬楼梯(Min Cost Climbing Stairs)
Leetcode之动态规划(DP)专题-746. 使用最小花费爬楼梯(Min Cost Climbing Stairs) 数组的每个索引做为一个阶梯,第 i个阶梯对应着一个非负数的体力花费值 cost ...
- LeetCode(70): 爬楼梯
Easy! 题目描述: 假设你正在爬楼梯.需要 n 步你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n 是一个正整数. 示例 1: 输入: 2 ...
- 爬楼梯(LintCode)
爬楼梯 假设你正在爬楼梯,需要n步你才能到达顶部.但每次你只能爬一步或者两步,你能有多少种不同的方法爬到楼顶部? 样例 比如n=3,中不同的方法 返回 3 用递归又超时了..于是又换了DP,dp并不熟 ...
- 【LeetCode】70. 爬楼梯
爬楼梯 假设你正在爬楼梯.需要 n 阶你才能到达楼顶. 每次你可以爬 1 或 2 个台阶.你有多少种不同的方法可以爬到楼顶呢? 注意: 给定 n 是一个正整数. 示例 1: 输入: 2 输出: 2 解 ...
- [LeetCode] 70. Climbing Stairs 爬楼梯问题
You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...
- lintcode: 爬楼梯
题目: 爬楼梯 假设你正在爬楼梯,需要n步你才能到达顶部.但每次你只能爬一步或者两步,你能有多少种不同的方法爬到楼顶部? 样例 比如n=3,中不同的方法 返回 3 解题: 动态规划题目,同时还是有顺序 ...
- 爬楼梯问题-斐波那契序列的应用.md
N 阶楼梯,一次可以爬1.2.3...n步,求爬楼梯的种类数 /** * 斐波那契序列 */ public class ClimbingStairs { // Sol 1: 递归 // 递归 公式:F ...
- 2017广东工业大学程序设竞赛C题爬楼梯
Description 小时候,我只能一阶一阶得爬楼梯, 后来,我除了能一次爬一阶,还可以一次爬两阶, 到现在,我最多一次可以爬三阶. 那么现在问题来了,我想爬上n层楼,相邻楼层之间有一段楼梯,虽然我 ...
随机推荐
- 基于C#的无边框窗体阴影绘制方案 - 开源研究系列文章
今天介绍无边框窗体阴影绘制的内容. 上次有介绍使用双窗体的方法来显示阴影,这次介绍使用API函数来进行绘制.这里使用的是Windows API函数,操作系统的窗体也是用的这个来进行的绘制. 1. 项目 ...
- BUUCTF Reverse-[FlareOn6]Overlong-动态调试
没有什么问题,直接进 三个函数,字符串也没啥特殊的 应该是个加密 返回上面分析 数据很大,你忍一下 也就是说它会找28位加密 然后我们接着分析 这个提示刚好28位 也就是说28位对应这个框 如果我们修 ...
- SpringBoot3集成ElasticSearch
目录 一.简介 二.环境搭建 1.下载安装包 2.服务启动 三.工程搭建 1.工程结构 2.依赖管理 3.配置文件 四.基础用法 1.实体类 2.初始化索引 3.仓储接口 4.查询语法 五.参考源码 ...
- SqlServer表添加字段
IF NOT EXISTS (SELECT * FROM syscolumns WHERE id=object_id('表名') AND name='字段名') ALTER TABLE 表名 ADD ...
- 细数2019-2023年CWE TOP 25 数据,看软件缺陷的防护
本文分享自华为云社区<从过去5年CWE TOP 25的数据看软件缺陷的防护>,作者:Uncle_Tom. "以史为鉴,可以知兴替".CWE 已经连续5年发布了 CWE ...
- 如何get一个终身免费续期的定制数字人?
想拥有一个"数字分身" 吗?给你一个终身免费续期的特权. 定制周期长?训练.运营成本高?成片效果生硬?无法应用于实际场景? 随着AIGC技术的快速发展,虚拟数字人的生成效率不断提高 ...
- 2018-D
2018-D 新建数据库 test0317,目录为考试目录,并在完成建表后备份 1.建表: use [test0317]; create table [STD_INFO]( [std_id] int ...
- Github、Gitee优秀的开源项目
收集 Github.Gitee优秀的开源项目,并进行归类整理.项目地址 目录 编程语言项目 SprinBoot 项目 源码分析项目 前后端分离项目 Vue2 项目 Vue3 项目 微服务项目 Api ...
- C++ RAII在HotSpot VM中的重要应用
RAII(Resource Acquisition Is Initialization),也称为"资源获取就是初始化",是C++语言的一种管理资源.避免泄漏的惯用法.C++标准保证 ...
- [HNCTF 2022 WEEK2]e@sy_flower
花指令分析 如果没接触过花指令,先看这个博客,大致了解一下花指令 https://www.cnblogs.com/Here-is-SG/p/15802040.html 点击此处下载附件 查壳 32位, ...