转载请注明出处:https://www.cnblogs.com/zhiyong-ITNote

基本简述

Llama2-Chinese 大模型:由清华、交大以及浙大博士团队领衔开发;基于200B中文语料库结合Llama2基座模型训练。

Llama中文社区:国内最领先的开源大模型中文社区。

Atom大模型:为了区别于原始的Llama2模型,后续中文Llama2大模型,改名为Atom大模型。

模型获取地址:Huggingface

GITHUB地址:GITHUB

模型信息

Huggingface上Llama-Chinese大模型集合:



查看下Llama2-Chinese-7b-Chat模型的config.json:



查看下Atom-7B-Chat的config.json:



简单看看区别,官方说明:

  1. Atom模型:基于Llama2-7B采用大规模的中文数据进行了继续预训练。
  2. Llama2-Chinese:由于Llama2本身的中文对齐较弱,我们采用中文指令集,对meta-llama/Llama-2-7b-chat-hf进行LoRA微调,使其具备较强的中文对话能力。

总结来说,Atom模型时重新预训练的;而Llama2-Chinese模型是微调后的。因此如果想要比较完善更全面的中文模型,建议是用Atom模型。

转载请注明出处:https://www.cnblogs.com/zhiyong-ITNote

调用说明

根据 官方文档 在命令行调用API:

from transformers import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained('meta-llama/Llama-2-7b-chat-hf',device_map='auto',torch_dtype=torch.float16,load_in_8bit=True)
model =model.eval()
tokenizer = AutoTokenizer.from_pretrained('meta-llama/Llama-2-7b-chat-hf',use_fast=False)
input_ids = tokenizer(['<s>Human: 介绍一下中国\n</s><s>Assistant: '], return_tensors="pt",add_special_tokens=False).input_ids.to('cuda')
generate_input = {
"input_ids":input_ids,
"max_new_tokens":512,
"do_sample":True,
"top_k":50,
"top_p":0.95,
"temperature":0.3,
"repetition_penalty":1.3,
"eos_token_id":tokenizer.eos_token_id,
"bos_token_id":tokenizer.bos_token_id,
"pad_token_id":tokenizer.pad_token_id
}
generate_ids = model.generate(**generate_input)
text = tokenizer.decode(generate_ids[0])
print(text)

分析来看,调用的是基于Llama2微调后的模型,而不是预训练的模型。暂时也没有看到Atom预训练模型调用的资料。在这里补一下:

# 转载请注明出处:https://www.cnblogs.com/zhiyong-ITNote
from transformers import AutoTokenizer, LlamaForCausalLM
model = LlamaForCausalLM.from_pretrained('mnt/data/zhangzheng/data/AtoM-7B/checkpoint-56000',device_map='auto',torch_dtype=torch.float16,load_in_8bit=True)
model =model.eval()
tokenizer = AutoTokenizer.from_pretrained('mnt/data/zhangzheng/data/AtoM-7B/checkpoint-56000',use_fast=False)
input_ids = tokenizer(['<s>Human: 介绍一下中国\n</s><s>Assistant: '], return_tensors="pt",add_special_tokens=False).input_ids.to('cuda')
generate_input = {
"input_ids":input_ids,
"max_new_tokens":512,
"do_sample":True,
"top_k":50,
"top_p":0.95,
"temperature":0.3,
"repetition_penalty":1.3,
"eos_token_id":tokenizer.eos_token_id,
"bos_token_id":tokenizer.bos_token_id,
"pad_token_id":tokenizer.pad_token_id
}
generate_ids = model.generate(**generate_input)
text = tokenizer.decode(generate_ids[0])
print(text)

其实就是根据huggingface上的模型config.json文件的_name_or_path属性值重新配置模型名称即可。

LlamaForCausalLM

这个类是Llama2模型对接到transformers库的衔接类。由config.json的architectures属性值指定了。而且在官方文档有API说明.



对应在github上的实现:



从之前ChatGLM-6B的源码结构分析来看,Llama2的关键源码也是这个llama文件夹下的这些文件,尤其是modeling_llama.py文件。

总结

从目前官方提供的文档等信息来看,资料还是比较少的,尤其是Atom模型的信息及示例等。这也需要我们在自身学习的过程中帮助社区不断地完善相关信息,反哺社区和中文大模型的发展。

转载请注明出处:https://www.cnblogs.com/zhiyong-ITNote

聊聊Llama2-Chinese中文大模型的更多相关文章

  1. 无插件的大模型浏览器Autodesk Viewer开发培训-武汉-2014年8月28日 9:00 – 12:00

    武汉附近的同学们有福了,这是全球第一次关于Autodesk viewer的教室培训. :) 你可能已经在各种场合听过或看过Autodesk最新推出的大模型浏览器,这是无需插件的浏览器模型,支持几十种数 ...

  2. 华为高级研究员谢凌曦:下一代AI将走向何方?盘古大模型探路之旅

    摘要:为了更深入理解千亿参数的盘古大模型,华为云社区采访到了华为云EI盘古团队高级研究员谢凌曦.谢博士以非常通俗的方式为我们娓娓道来了盘古大模型研发的"前世今生",以及它背后的艰难 ...

  3. AI大模型学习了解

    # 百度文心 上线时间:2019年3月 官方介绍:https://wenxin.baidu.com/ 发布地点: 参考资料: 2600亿!全球最大中文单体模型鹏城-百度·文心发布 # 华为盘古 上线时 ...

  4. PowerDesigner 学习:十大模型及五大分类

    个人认为PowerDesigner 最大的特点和优势就是1)提供了一整套的解决方案,面向了不同的人员提供不同的模型工具,比如有针对企业架构师的模型,有针对需求分析师的模型,有针对系统分析师和软件架构师 ...

  5. PowerDesigner 15学习笔记:十大模型及五大分类

    个人认为PowerDesigner 最大的特点和优势就是1)提供了一整套的解决方案,面向了不同的人员提供不同的模型工具,比如有针对企业架构师的模型,有针对需求分析师的模型,有针对系统分析师和软件架构师 ...

  6. 文心大模型api使用

    文心大模型api使用 首先,我们要获取硅谷社区的连个key 复制两个api备用 获取Access Token 获取access_token示例代码 之后就会输出 作文创作 作文创作:作文创作接口基于文 ...

  7. 千亿参数开源大模型 BLOOM 背后的技术

    假设你现在有了数据,也搞到了预算,一切就绪,准备开始训练一个大模型,一显身手了,"一朝看尽长安花"似乎近在眼前 -- 且慢!训练可不仅仅像这两个字的发音那么简单,看看 BLOOM ...

  8. DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍

    DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍 1. 概述 近日来,ChatGPT及类似模型引发了人工智能(AI)领域的一场风潮. 这场风潮对数字世 ...

  9. Familia:百度NLP开源的中文主题模型应用工具包

    参考:Familia的Github项目地址.百度NLP专栏介绍 Familia 开源项目包含文档主题推断工具.语义匹配计算工具以及基于工业级语料训练的三种主题模型:Latent Dirichlet A ...

  10. 图神经网络之预训练大模型结合:ERNIESage在链接预测任务应用

    1.ERNIESage运行实例介绍(1.8x版本) 本项目原链接:https://aistudio.baidu.com/aistudio/projectdetail/5097085?contribut ...

随机推荐

  1. c语言代码练习2(2)

    //利用for循环,输出1-10阶乘的和#define _CRT_SECURE_NO_WARNINGS 1 #include <stdio.h> int main( ) { int i = ...

  2. PXC集群脑裂导致节点是无法加入无主的集群

    一套2节点的MySQL PXC集群,第1节点作为主用节点长时间的dml操作,导致大量的事务阻塞,出现异常,此时查看第2节点显示是primary状态,但无事务阻塞情况. 此时第1节点无法正常提供服务,于 ...

  3. day1 C语言:对于P1055 ISBN号码的代码优化及多解

    day1 C语言:对于P1055 ISBN号码的代码优化及多解 先看题目 直接说最优解,其他方法后置 第一部分 1.第一个点是数据的输入,本人第一的想法是直接用int类型去接受数据,但因为" ...

  4. Kraft模式下Kafka脚本的使用

    Kafka集群 版本:V3.5.1 名称 Node1 Node2 Node3 IP 172.29.145.157 172.29.145.182 172.29.145.183 (1)查看Kraft集群中 ...

  5. 计算机的数值转化与网络的IP地址分类与地址划分

    数值转换 数字系统由来 远古时代是没有数字系统非位置化数字系统: 罗马数字 (I-1.II-2.III-3.IV-4.V-5.VI-6.VII-7.VIII-8.IX-9.X-10) 位置话数字化系统 ...

  6. MySQL索引、事务与存储引擎

    MySQL索引.事务与存储引擎 索引介绍 1.索引的概念 索引是一个排序的列表,在这个列表中存储着索引的值和包含这个值的数据所在行的物理地址(类似于C语言的链表通过指针指向数据记录的内存地址). 使用 ...

  7. Isito 入门(九):安全认证

    本教程已加入 Istio 系列:https://istio.whuanle.cn 目录 7,认证 Peer Authentication PeerAuthentication 的定义 实验 Reque ...

  8. 解决报错Invalid bound statement (not found)

    解决报错Invalid bound statement (not found) 问题描述: 在玩mybatis-plus的时候,在测试类写了一个测试批量插入的方法,结果就报错: 它的意思是 无效的跳转 ...

  9. 高效使用 PyMongo 进行 MongoDB 查询和插入操作

    插入到集合中: 要将记录(在MongoDB中称为文档)插入到集合中,使用insert_one()方法.insert_one()方法的第一个参数是一个包含文档中每个字段的名称和值的字典. import ...

  10. UIPath动态操作控制

    如果放弃太早,你永远都不知道自己会错过什么. 一.浏览器 打开浏览器:OpenBrowser: 关闭浏览器:Close Tab.Close Application.Kill Process: 二. 鼠 ...