2019 杭电多校 7 1006

题目链接:HDU 6651

比赛链接:2019 Multi-University Training Contest 7

Problem Description

Final Exam is coming! Cuber QQ has now one night to prepare for tomorrow's exam.

The exam will be a exam of problems sharing altogether \(m\) points. Cuber QQ doesn't know about the exact distribution. Of course, different problems might have different points; in some extreme cases, some problems might worth \(0\) points, or all \(m\) points. Points must be integers; a problem cannot have \(0.5\) point.

What he knows, is that, these \(n\) problems will be about \(n\) totally different topics. For example, one could be testing your understanding of Dynamic Programming, another might be about history of China in 19th century. So he has to divide your night to prepare each of these topics separately. Also, if one problem is worth \(x\) points in tomorrow's exam, it takes at least \(x+1\) hours to prepare everything you need for examination. If he spends less than \(x+1\) hours preparing, he shall fail at this problem.

Cuber QQ's goal, strangely, is not to take as much points as possible, but to solve at least \(k\) problems no matter how the examination paper looks like, to get away from his parents' scoldings. So he wonders how many hours at least he needs to achieve this goal.

Input

The first line of the input is an integer \(t (1\le t\le 20\ 000)\), denoting the number of test cases.

Each test case are three space-separated integers \(n,m,k (0\le m\le 10^9, 1\le k\le n\le 10^9)\).

Output

For each test case, output the number of hours Cuber QQ needs.

Sample Input

2
1 10 1
10 109 10

Sample Output

11
1100

Hint

Cuber QQ should solve one problem in sample 1, so he at least prepares 11 hours when the problem one is 10 point.

Cuber QQ should solve all the ten problems in sample 2, so he at least prepares 110 hours for each problem because there may be one problem is 109 point.

Solution

题意:

一次考试共有 \(n\) 道题,总分为 \(m\) 分。每道题的分数不一定,可能是 \(0\) 分,也可能是 \(m\) 分,分数一定是整数。如果一道题分数为 \(x\),那么复习这道题的时间为 \(x + 1\),现在要保证在考试中做出 \(k\) 题,求准备考试的时间最少为多少。

题解:

思维

如果做不出 \(k\) 题,那么也就是复习时间最少的 \(n − k + 1\) 道题的难度都小于等于复习的时间。因此想要做出 \(k\) 题,只要让复习时间最少的 \(n − k + 1\) 道题的复习时间总和 \(> m\) 即可。

也就是 \(n - k + 1\) 道题的复习时间总和为 \(m + 1\),剩下 \(k - 1\) 道题的复习时间不是最少的 \(k - 1\) 道题即可。

Code

#include <bits/stdc++.h>
using namespace std; typedef long long ll; int main() {
int T;
cin >> T;
while(T--) {
ll n, m, k;
scanf("%lld%lld%lld", &n, &m, &k);
printf("%lld\n", m + 1 + (m / (n - k + 1) + 1) * (k - 1));
}
return 0;
}

HDU 6651 Final Exam (思维)的更多相关文章

  1. HDU 6651 Final Exam

    hdu题面 Time limit 2000 ms Memory limit 524288 kB OS Windows 吐槽 比赛时候晕死了-- 解题思路 先留坑 公式法 https://blog.cs ...

  2. 2019 Multi-University Training Contest 7 Kejin Player Final Exam

    Kejin Player 期望DP 题意: 初始等级为1,每一级有四个参数 r , s , x , a . 每一级有一个概率p=r/s花费a的代价升级到下一级,失败可能会倒退到x级 设从 l 到 r ...

  3. Final Exam Arrangement(ZOJ)

    In Zhejiang University, there are N different courses labeled from 1 to N. Each course has its own t ...

  4. zoj 3721 Final Exam Arrangement【贪心】

    题目:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3721 来源:http://acm.hust.edu.cn/vjudg ...

  5. 2019HDU多校第七场 HDU6651 Final Exam

    一.题目 Final Exam 二.分析 题目说的比较绕,总之一定要记住,$n$个题目都可以做,至少作对$k$到,但是做题目的人不知道每道题对应的分数. 作为出题人,如果他是田忌,肯定不会去在做题目的 ...

  6. hdu多校第七场 1006(hdu6651) Final Exam 博弈

    题意: 有n道题,这n道题共m分,要求你至少做出k道才能及格,你可以自由安排复习时间,但是只有某道题复习时间严格大于题目分配的分值时这道题才能够被做出来,求最少的,能够保证及格的复习时间.复习时间和分 ...

  7. [2019杭电多校第七场][hdu6651]Final Exam

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6651 题意:n个科目,总共m分,通过一科需要复习花费科目分数+1分钟,在不知道科目分数的情况下,问最少 ...

  8. HDU 6038 Function(思维+寻找循环节)

    http://acm.hdu.edu.cn/showproblem.php?pid=6038 题意:给出两个序列,一个是0~n-1的排列a,另一个是0~m-1的排列b,现在求满足的f的个数. 思路: ...

  9. HDU - 6438(贪心+思维)

    链接:HDU - 6438 题意:给出 n ,表示 n 天.给出 n 个数,a[i] 表示第 i 天,物品的价格是多少.每天可以选择买一个物品,或者卖一个已有物品,也可以什么都不做,问最后最大能赚多少 ...

随机推荐

  1. PHP使用引用变量foreach时,切记其他循环不要使用同一个名字的变量

    foreach ($log['data'] as $k => &$value) { if ($value['token'] != 0) { $value['change_num'] = ...

  2. vue消息提示Message

    https://www.iviewui.com/components/message this.$Message.info(config) this.$Message.success(config) ...

  3. Eclipes更改主题及字体

    1.打开Eclipse的Help->Eclipse Marketplace 2.在Find里搜索Eclipse Color Theme,点击Install按钮(lz已经安过了所以没有) 3.打开 ...

  4. 基于turtle库的七段数码管绘制

    ·文章结构 >样例及概览 >函数框架分析 >功能发展·样例及概览 七段数码管,是信号灯.电子表等很多设备的显示形式.而利用python的turtle库,我们也可以模拟着写出一个动态生 ...

  5. docker对容器进行资源限制

    对内存进行资源限制 docker run --memory=200m soymilk/stress 对cpu进行资源限制 终端1 docker run --name=test1 --cpu-share ...

  6. multiple-cursors实在是太好用了

    multiple-cursors实在是太好用了 */--> code {color: #FF0000} pre.src {background-color: #002b36; color: #8 ...

  7. MATLAB中的fspecial函数

    Matlab 的fspecial函数用法 转载:https://blog.csdn.net/majinlei121/article/details/50255837 fspecial函数用于建立预定义 ...

  8. CF1239

    然后ZUTTER_打的第一场div1以没敢交题 完!美!结!束!!! A 没有发现性质就找规律海星 我们可以算出一列的贡献:\(g[i][0]\)表示上两个不同,\(g[i][1]\)表示上两个相同就 ...

  9. Java技术专区-虚拟机系列-类加载机制(类的初始化)

      类加载的生命周期:  加载 -> 验证 -> 准备 -> 解析 -> 初始化 -> 使用 -> 卸载       加载 -> 验证 -> 准备 -& ...

  10. 在知乎上看到的几个关于C的奇淫技巧

    有一个鲜为人知的运算符叫”趋向于”, 写作“-->”.比如说如果要实现一个倒数的程序,我们可以定义一个变量x,然后让它趋向与0: 输出: 然后我们把 "x-->0" 换 ...