2019 杭电多校 7 1006

题目链接:HDU 6651

比赛链接:2019 Multi-University Training Contest 7

Problem Description

Final Exam is coming! Cuber QQ has now one night to prepare for tomorrow's exam.

The exam will be a exam of problems sharing altogether \(m\) points. Cuber QQ doesn't know about the exact distribution. Of course, different problems might have different points; in some extreme cases, some problems might worth \(0\) points, or all \(m\) points. Points must be integers; a problem cannot have \(0.5\) point.

What he knows, is that, these \(n\) problems will be about \(n\) totally different topics. For example, one could be testing your understanding of Dynamic Programming, another might be about history of China in 19th century. So he has to divide your night to prepare each of these topics separately. Also, if one problem is worth \(x\) points in tomorrow's exam, it takes at least \(x+1\) hours to prepare everything you need for examination. If he spends less than \(x+1\) hours preparing, he shall fail at this problem.

Cuber QQ's goal, strangely, is not to take as much points as possible, but to solve at least \(k\) problems no matter how the examination paper looks like, to get away from his parents' scoldings. So he wonders how many hours at least he needs to achieve this goal.

Input

The first line of the input is an integer \(t (1\le t\le 20\ 000)\), denoting the number of test cases.

Each test case are three space-separated integers \(n,m,k (0\le m\le 10^9, 1\le k\le n\le 10^9)\).

Output

For each test case, output the number of hours Cuber QQ needs.

Sample Input

2
1 10 1
10 109 10

Sample Output

11
1100

Hint

Cuber QQ should solve one problem in sample 1, so he at least prepares 11 hours when the problem one is 10 point.

Cuber QQ should solve all the ten problems in sample 2, so he at least prepares 110 hours for each problem because there may be one problem is 109 point.

Solution

题意:

一次考试共有 \(n\) 道题,总分为 \(m\) 分。每道题的分数不一定,可能是 \(0\) 分,也可能是 \(m\) 分,分数一定是整数。如果一道题分数为 \(x\),那么复习这道题的时间为 \(x + 1\),现在要保证在考试中做出 \(k\) 题,求准备考试的时间最少为多少。

题解:

思维

如果做不出 \(k\) 题,那么也就是复习时间最少的 \(n − k + 1\) 道题的难度都小于等于复习的时间。因此想要做出 \(k\) 题,只要让复习时间最少的 \(n − k + 1\) 道题的复习时间总和 \(> m\) 即可。

也就是 \(n - k + 1\) 道题的复习时间总和为 \(m + 1\),剩下 \(k - 1\) 道题的复习时间不是最少的 \(k - 1\) 道题即可。

Code

#include <bits/stdc++.h>
using namespace std; typedef long long ll; int main() {
int T;
cin >> T;
while(T--) {
ll n, m, k;
scanf("%lld%lld%lld", &n, &m, &k);
printf("%lld\n", m + 1 + (m / (n - k + 1) + 1) * (k - 1));
}
return 0;
}

HDU 6651 Final Exam (思维)的更多相关文章

  1. HDU 6651 Final Exam

    hdu题面 Time limit 2000 ms Memory limit 524288 kB OS Windows 吐槽 比赛时候晕死了-- 解题思路 先留坑 公式法 https://blog.cs ...

  2. 2019 Multi-University Training Contest 7 Kejin Player Final Exam

    Kejin Player 期望DP 题意: 初始等级为1,每一级有四个参数 r , s , x , a . 每一级有一个概率p=r/s花费a的代价升级到下一级,失败可能会倒退到x级 设从 l 到 r ...

  3. Final Exam Arrangement(ZOJ)

    In Zhejiang University, there are N different courses labeled from 1 to N. Each course has its own t ...

  4. zoj 3721 Final Exam Arrangement【贪心】

    题目:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3721 来源:http://acm.hust.edu.cn/vjudg ...

  5. 2019HDU多校第七场 HDU6651 Final Exam

    一.题目 Final Exam 二.分析 题目说的比较绕,总之一定要记住,$n$个题目都可以做,至少作对$k$到,但是做题目的人不知道每道题对应的分数. 作为出题人,如果他是田忌,肯定不会去在做题目的 ...

  6. hdu多校第七场 1006(hdu6651) Final Exam 博弈

    题意: 有n道题,这n道题共m分,要求你至少做出k道才能及格,你可以自由安排复习时间,但是只有某道题复习时间严格大于题目分配的分值时这道题才能够被做出来,求最少的,能够保证及格的复习时间.复习时间和分 ...

  7. [2019杭电多校第七场][hdu6651]Final Exam

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6651 题意:n个科目,总共m分,通过一科需要复习花费科目分数+1分钟,在不知道科目分数的情况下,问最少 ...

  8. HDU 6038 Function(思维+寻找循环节)

    http://acm.hdu.edu.cn/showproblem.php?pid=6038 题意:给出两个序列,一个是0~n-1的排列a,另一个是0~m-1的排列b,现在求满足的f的个数. 思路: ...

  9. HDU - 6438(贪心+思维)

    链接:HDU - 6438 题意:给出 n ,表示 n 天.给出 n 个数,a[i] 表示第 i 天,物品的价格是多少.每天可以选择买一个物品,或者卖一个已有物品,也可以什么都不做,问最后最大能赚多少 ...

随机推荐

  1. margin 负值问题

    * margin-top 和 margin-left 负值,自身元素向上.向左移动: * margin-right 负值,右侧元素左移,自身元素不受影响: * margin-bottom 负值,下方元 ...

  2. js匿名函数测试

    js匿名函数测试 <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> < ...

  3. list列表操作(创建、增加、删除、取值)

    list ####(一)列表的创建[].追加(append,extend,insert).删除(remove.del.poop).修改 ##创建一个空列表.一个字符串列表.一个数字列表 lis0 = ...

  4. log4j日志格式化

    Apache log4j 提供了各种布局对象,每一个对象都可以根据各种布局格式记录数据.另外,也可以创建一个布局对象格式化测井数据中的特定应用的方法. 所有的布局对象 - Appender对象收到 L ...

  5. AOP之PostSharp2-OnMethodBoundaryAspect

    在上一篇中我们了解了简单的OnExceptionAspectAOP面向方向切入,在第一节中我们将继续我们的PostSharp AOP系列的OnMethodBoundaryAspect方法行为的切入,这 ...

  6. Darknet YOLOv3 on Jetson Nano

    推荐比较好的博客:https://ai4sig.org/2019/06/jetson-nano-darknet-yolov3/ 用的AlexeyAB的版本,并且给出了yolov3和tiny的效果对比. ...

  7. dwr中的部分问题和总结

    2015-9-1 1.dwr设置同步异步:DWREngine.setAsync(false);//dwr设置为同步 --->使用目的是堵塞js,因为设置这样是为了js进行java的后台数据获取. ...

  8. fetch bulk collect into 进行批量、快速提取数据的方式

    1.游标的含义 2.oracle 11g 中的三类游标的使用方式 3.oracle 11g中使用 fetch ... bulk collect into 进行批量.快速提取数据的方式 4.根据不同情况 ...

  9. springmvc基于注解的权限控制

    一.权限码 /** * @Title: AuthCode.java * @Package cn.com.kamfu.auth * @Description: TODO(用一句话描述该文件做什么) * ...

  10. Spring事务管理-传播行为-隔离级别

    事务是逻辑上的一组操作,这组操作要么全部成功,要么全部失败. 事务的特性:ACID 原子性:事务是一个不可分割的工作单位,事务中的操作要么都发生,要么都不发生 一致性:事务前后数据的完整性约束保持一致 ...