[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
题面
给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对。q组询问
分析
我们要求的是
根据$kgcd(i,j)=gcd(ki,kj)$,
$$原式=\sum_{p \in P} \sum_{i=1}^{\lfloor n/p \rfloor} \sum_{j=1}^{\lfloor m/p \rfloor} [gcd(i,j)=1]\]
又根据莫比乌斯反演里的一个常用结论(证明见BZOJ 2301)$$\sum_{i=1}^n \sum_{j=1}^m [gcd(i,j)=1]= \sum_{d=1}^{min(n,m)} \mu(d ) \lfloor \frac{n}{d} \rfloor \lfloor \frac{m}{d} \rfloor$$
\]
令\(T=pd\),则\(d=\frac{T}{p}\)
改变求和顺序,$$原式=\sum_{T=1}^{min(n,m)} \sum_{p|t \ \cap \ p \in P} \lfloor \frac{n}{T} \rfloor \lfloor \frac{m}{T} \rfloor \mu(\frac{T}{p})$$
\]
令\(g(n)=\sum_{p|n \ \cap \ p \in P } \mu(\frac{n}{p})\)
\]
前面的部分可以数论分块求解,考虑如何快速求出\(g(T)\)
对于每个质数\(p\),我们从1开始枚举\(j\),并保证\(jp \leq n\),然后用\(\mu(j)\)更新\(g(jp)\)的值。
由于\(1/1+1/2+1/3+...+1/n=O(logn)\),每次更新的复杂度是均摊\(O(\log n)\)的,而1~n的质数约概有\(\frac{n}{\ln n}\)个,所以预处理g函数的总时间复杂度为\(O(n)\)
总时间复杂度\(O(n+q\sqrt n)\)
代码
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#define maxn 10000000
using namespace std;
typedef long long ll;
int t,n,m;
int cnt;
int prime[maxn+5];
bool vis[maxn+5];
int mu[maxn+5];
ll g[maxn+5];
ll sumg[maxn+5];
void sieve(int n){
mu[1]=1;
for(int i=2;i<=n;i++){
if(!vis[i]){
mu[i]=-1;
prime[++cnt]=i;
}
for(int j=1;j<=cnt&&i*prime[j]<=n;j++){
vis[i*prime[j]]=1;
if(i%prime[j]==0){
mu[i*prime[j]]=0;
break;
}else mu[i*prime[j]]=-mu[i];
}
}
for(int i=1;i<=cnt;i++){
for(int j=1;j*prime[i]<=n;j++){
g[prime[i]*j]+=mu[j];
}
}
for(int i=1;i<=n;i++){
sumg[i]=sumg[i-1]+g[i];
}
}
int cas;
ll calc(int n,int m){
int nn=min(n,m);
ll ans=0;
for(int l=1,r;l<=nn;l=r+1){
r=min(n/(n/l),m/(m/l));
ans+=(sumg[r]-sumg[l-1])*(n/l)*(m/l);
}
return ans;
}
int main(){
sieve(maxn);
scanf("%d",&cas);
while(cas--){
scanf("%d %d",&n,&m);
printf("%lld\n",calc(n,m));
}
}
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)的更多相关文章
- Bzoj 2820: YY的GCD(莫比乌斯反演+除法分块)
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MB Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x& ...
- BZOJ 2820: YY的GCD [莫比乌斯反演]【学习笔记】
2820: YY的GCD Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 1624 Solved: 853[Submit][Status][Discu ...
- bzoj 2820 YY的GCD 莫比乌斯反演
题目大意: 给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对 这里就抄一下别人的推断过程了 后面这个g(x) 算的方法就是在线性 ...
- 【BZOJ2820】YY的GCD(莫比乌斯反演 数论分块)
题目链接 大意 给定多组\(N\),\(M\),求\(1\le x\le N,1\le y\le M\)并且\(Gcd(x, y)\)为质数的\((x, y)\)有多少对. 思路 我们设\(f(i)\ ...
- bzoj 2820 YY的GCD - 莫比乌斯反演 - 线性筛
Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种 傻×必 ...
- BZOJ 2820: YY的GCD 莫比乌斯反演_数学推导_线性筛
Code: #include <cstdio> #include <algorithm> #include <cstring> #include <vecto ...
- BZOJ 2820 YY的GCD ——莫比乌斯反演
我们可以枚举每一个质数,那么答案就是 $\sum_{p}\sum_{d<=n}\mu(d)*\lfloor n / pd \rfloor *\lfloor m / pd \rfloor$ 直接做 ...
- bzoj 3309 DZY Loves Math —— 莫比乌斯反演+数论分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3309 凭着上课所讲和与 Narh 讨论推出式子来: 竟然是第一次写数论分块!所以迷惑了半天: ...
- 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块
https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...
随机推荐
- js倒计时功能中newData().getTime()在iOS下会报错,显示 nan
最近在做移动端项目 ,有个设置开始时间和结束时间,然后倒计时 这个活动还有几天.在安卓上能正确转换时间,但在iOS上不能显示,为NaN-NaN1-NaN Invalid Date, 就好比new D ...
- 进程队列补充、socket实现服务器并发、线程完结
目录 1.队列补充 2.关于python并发与并行的补充 3.TCP服务端实现并发 4.GIL全局解释器锁 什么是保证线程安全呢? GIL与Lock 5.验证多线程的作用 对结论的验证: 6.死锁现象 ...
- 【bzoj2002】弹飞绵羊
题目 某天,Lostmonkey发明了一种超级弹力装置,为了在他的绵羊朋友面前显摆,他邀请小绵羊一起玩个游戏.游戏一开始,Lostmonkey在地上沿着一条直线摆上n个装置,每个装置设定初始弹力系数k ...
- Codecombat 游戏攻略(计算机科学三)
第二关 赋值运算符-=字符串拼串循环语句while // 你可以把字符串连起来,或者把数字连接到字符串. // 一起唱歌,使用字符串连接: // X potions of health on the ...
- JavaScript正则表达式简介(一)
一.正则表达式 正则表达式Regular Expression,可以简写为regexp.regex或是RE. 正则表达式使用单个字符串来描述或是匹配一系列符合某个句法规则的字符串模型. 按照某种规则去 ...
- PHP开发工具PHP基础教程
PHP开发 工具PHP基础教程,以下是兄弟连PHP培训小编整理: PHP IDE PHP IDE也不少,主要从几个方面进行筛选: 跨平台(能够同时在windows,mac或者ubuntu上面运 ...
- mysql FULL JOIN关键字 语法
mysql FULL JOIN关键字 语法 作用:只要其中某个表存在匹配,FULL JOIN 关键字就会返回行.“富瑞华”牌大理石构件 语法:SELECT column_name(s) FROM ta ...
- 小波神经网络(WNN)
人工神经网络(ANN) 是对人脑若干基本特性通过数学方法进行的抽象和模拟,是一种模仿人脑结构及其功能的非线性信息处理系统. 具有较强的非线性逼近功能和自学习.自适应.并行处理的特点,具有良好的容错能力 ...
- PC端无论页面有没有完全撑开把footer保持在最底部(不用定位)
最近在写项目,有的页面没有占到一屏,然后footer也就是底部就靠上了,这样很影响美观,于是在网上找了找,下面是我的成果 解决该问题的最好方法是采用CSS3提供的一种先进布局模型 :flexbox,可 ...
- Redis高可用分布式
阅读目录: 高可用 数据同步 分布式 分布式集群时代 总结 高可用 高可用(High Availability),是当一台服务器停止服务后,对于业务及用户毫无影响. 停止服务的原因可能由于网卡.路由器 ...