Gym - 101630G The Great Wall (前缀和+树状数组+二分)
题意:有一个序列,一开始所有的元素都是ai,你可以选择两个长度相等的区间,如果某个元素被一个区间覆盖,那么变为bi,如果被两个区间都覆盖,那么变为ci。问所有区间的选择方法中产生的第k小的元素总和。
首先很容易想到的是二分答案,枚举一个区间,然后用线段树或树状数组查询另一个区间使得元素总和小于等于答案的数量。
为了方便计算,我们把b和c数组中的元素都减掉a,即bi=bi-ai,ci=ci-ai,这样只要查询两区间中元素之和小于等于答案的数量就行了,最后再把答案加上a中元素的和。
由于序列是静态的,因此可以对b和c求个前缀和。
当两区间不相交时,只要把右边的区间从左往右移动,并把左边的区间和动态加入树状数组中查询即可。
当两区间相交时,问题就比较复杂了。按照官方题解中的方法,需要引进两个辅助函数g和f,两者相加会产生"bcb"的效果,这样就又可以用树状数组统计了。
其中$g_x=\sum\limits _{i=1}^{x-1}{(c_i-2b_i)}+\sum\limits _{i=x}^{x+r-1}{(c_i-b_i)}$
$f_y=\sum\limits _{i=1}^{y-1}{(2b_i-c_i)}+\sum\limits _{i=y}^{y+r-1}{b_i}$
推导过程:
设$g_x=\sum\limits _{i=1}^{x-1}{g_1x}+\sum\limits _{i=x}^{x+r-1}{g_2x}$
$f_y=\sum\limits _{i=1}^{y-1}{f_1y}+\sum\limits _{i=y}^{y+r-1}{f_2y}$
则有:$\left\{\begin{matrix}\begin{aligned}&f_1+g_1=0\\&f_1+g_2=b\\&f_2+g_2=c\\&f_2=b\end{aligned}\end{matrix}\right.$
联立方程组即可求出$f_1,f_2,g_1,g_2$的值。
最后要注意的是,由于需要在树状数组上查询的值最多只有O(n)种,因此可以将要查询的值离散化。
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll N=3e4+,inf=0x3f3f3f3f3f3f3f3fll;
ll n,len,k,a[N],b[N],c[N],C[N*],B[N*],n2,F[N],G[N],K[N],all;
ll lb(ll x) {return x&-x;}
void add(ll u,ll x) {for(; u<=n2; u+=lb(u))C[u]+=x;}
ll get(ll u) {ll ret=; for(; u; u-=lb(u))ret+=C[u]; return ret;}
ll sum(ll* t,ll l,ll r) {return t[r]-t[l-];}
ll g(ll x) {return sum(c,,x-)-*sum(b,,x-)+sum(c,x,x+len-)-sum(b,x,x+len-);}
ll f(ll x) {return *sum(b,,x-)-sum(c,,x-)+sum(b,x,x+len-);}
ll qry(ll x) {
ll cnt=;
for(ll i=; i<=n2; ++i)C[i]=;
for(ll i=len+; i+len-<=n; ++i) {
add(K[i-len]+,);
cnt+=get(upper_bound(B,B+n2,x-B[K[i]])-B);
}
for(ll i=; i<=n2; ++i)C[i]=;
for(ll i=; i+len-<=n; ++i) {
add(G[i-]+,);
if(i-len>=)add(G[i-len]+,-);
cnt+=get(upper_bound(B,B+n2,x-B[F[i]])-B);
}
return cnt;
}
ll bi(ll l,ll r) {
while(l<r) {
ll mid=l+((r-l)>>);
k<=qry(mid)?r=mid:l=mid+;
}
return l;
}
int main() {
scanf("%lld%lld%lld",&n,&len,&k);
for(ll i=; i<=n; ++i)scanf("%lld",&a[i]);
for(ll i=; i<=n; ++i)scanf("%lld",&b[i]);
for(ll i=; i<=n; ++i)scanf("%lld",&c[i]);
for(ll i=; i<=n; ++i)all+=a[i];
for(ll i=; i<=n; ++i)c[i]-=a[i],b[i]-=a[i];
for(ll i=; i<=n; ++i)b[i]+=b[i-],c[i]+=c[i-];
for(ll i=; i+len-<n; ++i)G[i]=g(i),B[n2++]=G[i];
for(ll i=; i+len-<=n; ++i)F[i]=f(i),B[n2++]=F[i];
for(ll i=; i+len-<=n; ++i)K[i]=sum(b,i,i+len-),B[n2++]=K[i];
B[n2++]=~inf,B[n2++]=inf;
sort(B,B+n2),n2=unique(B,B+n2)-B;
for(ll i=; i+len-<n; ++i)G[i]=lower_bound(B,B+n2,G[i])-B;
for(ll i=; i+len-<=n; ++i)F[i]=lower_bound(B,B+n2,F[i])-B;
for(ll i=; i+len-<=n; ++i)K[i]=lower_bound(B,B+n2,K[i])-B;
printf("%lld\n",all+bi(,c[n]));
return ;
}
Gym - 101630G The Great Wall (前缀和+树状数组+二分)的更多相关文章
- POJ 2828 Buy Tickets (线段树 or 树状数组+二分)
题目链接:http://poj.org/problem?id=2828 题意就是给你n个人,然后每个人按顺序插队,问你最终的顺序是怎么样的. 反过来做就很容易了,从最后一个人开始推,最后一个人位置很容 ...
- TZOJ 4602 高桥和低桥(二分或树状数组+二分)
描述 有个脑筋急转弯是这样的:有距离很近的一高一低两座桥,两次洪水之后高桥被淹了两次,低桥却只被淹了一次,为什么?答案是:因为低桥太低了,第一次洪水退去之后水位依然在低桥之上,所以不算“淹了两次”.举 ...
- POJ 2182 Lost Cows 【树状数组+二分】
题目链接:http://poj.org/problem?id=2182 Lost Cows Time Limit: 1000MS Memory Limit: 65536K Total Submis ...
- 树状数组+二分||线段树 HDOJ 5493 Queue
题目传送门 题意:已知每个人的独一无二的身高以及排在他前面或者后面比他高的人数,问身高字典序最小的排法 分析:首先对身高从矮到高排序,那么可以知道每个人有多少人的身高比他高,那么取较小值(k[i], ...
- P2161 [SHOI2009]会场预约[线段树/树状数组+二分/STL]
题目描述 PP大厦有一间空的礼堂,可以为企业或者单位提供会议场地.这些会议中的大多数都需要连续几天的时间(个别的可能只需要一天),不过场地只有一个,所以不同的会议的时间申请不能够冲突.也就是说,前一个 ...
- The Stream of Corning 2( 权值线段树/(树状数组+二分) )
题意: 有两种操作:1.在[l,r]上插入一条值为val的线段 2.问p位置上值第k小的线段的值(是否存在) 特别的,询问的时候l和p合起来是一个递增序列 1<=l,r<=1e9:1< ...
- 牛客多校第3场 J 思维+树状数组+二分
牛客多校第3场 J 思维+树状数组+二分 传送门:https://ac.nowcoder.com/acm/contest/883/J 题意: 给你q个询问,和一个队列容量f 询问有两种操作: 0.访问 ...
- BZOJ-2743: [HEOI2012]采花 前缀和 树状数组
BZOJ-2743 LUOGU:https://www.luogu.org/problemnew/show/P4113 题意: 给一个n长度的序列,m次询问区间,问区间中出现两次及以上的数字的个数.n ...
- [CSP-S模拟测试]:斯诺(snow)(数学+前缀和+树状数组)
题目传送门(内部题37) 输入格式 第一行一个整数$n$,表示区间的长度. 第二行一个长度为$n$的只包含$0,1,2$的字符串,表示给出的序列. 输出格式 一行一个整数,表示革命的区间的数量. 样例 ...
随机推荐
- input.validity
HTML5为表单提供了自带的输入规则提示 但是实际开发中,我们往往需要自定义提示消息和规则,例如限定了最大值但不要求超出时提示错误信息,这时便用到了H5提供的表单新的JS属性--validity,它是 ...
- Tensorflow 从文件中载入训练数据
本节包含: 用纯文本文件准备训练数据 加载文件中的训练数据 一.用纯文本文件准备训练数据 1.数据的数字化 比如,“是” —— “1”,“否” —— “0” “优”,“中”,“差” —— 1 2 3 ...
- python基础知识(字符串)
定义字符串 ' '单引号 " "双引号 只能用于单行 '" '"三引号 可以用于多行 拼接字符串使用 +号链接 字符串只能链接字符串其他类型字符串需要用s ...
- Python爬虫学习==>第十章:使用Requests+正则表达式爬取猫眼电影
学习目的: 通过一个一个简单的爬虫应用,初窥门径. 正式步骤 Step1:流程框架 抓取单页内容:利用requests请求目标站点,得到单个页面的html代码,返回结果: 正则表达式分析:根据html ...
- 【HANA系列】【第六篇】SAP HANA XS使用JavaScript(JS)调用存储过程(Procedures)
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:[HANA系列][第六篇]SAP HANA XS ...
- 从STL文件到网格拓扑
原文链接 STL文件是什么 STL文件是网格文件的一种格式,分为二进制和文本两种类型.具体来讲,它定义了一群三角面片,比如下面是一个文本的STL示例: solid geometryplusplus f ...
- WINDOWS mysql 5.7.15 安装配置方法图文教程
因本人需要需要安装Mysql,现将安装过程记录如下,在自己记录的同时,希望对有疑问的人有所帮助. 一.下载软件 1. 进入mysql官网,登陆自己的oracle账号(没有账号的自己注册一个),下载My ...
- Linux 基础整理
Linux系统的启动过程大体上可分为五部分:内核的引导:运行init:系统初始化:建立终端 :用户登录系统. 用户登录 Linux的账号验证程序是login,login会接收mingetty传来的用户 ...
- 网站性能优化(website performance optimization)
提高代码运行速度,或许我们从来没有优化这些页面来提高速度 想要开发优秀的网站,你必须了解你的用户,知道他们想要达到什么目的,同时还要明白浏览器的工作原理,从而能够打造快速良好的体验,我最近在PageS ...
- C语言中typedef,条件编译,结构体的说明
目录 typedef (类型别名) 条件编译 条件编译在头文件包含中的应用 结构体 使用结构体定义新的结构体变量 结构体成员的引用与赋值 结构体指针及其引用 typedef (类型别名) typede ...