问题描述

有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di。需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立基站的费用为Ci。如果在距离第i个村庄不超过Si的范围内建立了一个通讯基站,那么就村庄被基站覆盖了。如果第i个村庄没有被覆盖,则需要向他们补偿,费用为Wi。现在的问题是,选择基站的位置,使得总费用最小。

输入格式

输入文件的第一行包含两个整数N,K,含义如上所述。

第二行包含N-1个整数,分别表示D2,D3,…,DN ,这N-1个数是递增的。

第三行包含N个整数,表示C1,C2,…CN。

第四行包含N个整数,表示S1,S2,…,SN。

第五行包含N个整数,表示W1,W2,…,WN。

输出格式

输出文件中仅包含一个整数,表示最小的总费用。

样例输入

3 2

1 2

2 3 2

1 1 0

10 20 30

样例输出

4

说明

40%的数据中,N<=500;

100%的数据中,K<=N,K<=100,N<=20,000,Di<=1000000000,Ci<=10000,Si<=1000000000,Wi<=10000。

解析

可以想到是动态规划的题目。设\(f[i][j]\)表示把第j个基站修在第i个村庄且不考虑第i+1到第n个村庄的最小费用。那么,状态转移方程为

\[f[i][j]=min(f[k][j-1]+cost(k,i))
\]

其中\(cost(k,i)\)表示\(k\)到\(i\)的村庄中没有被\(i\)和\(k\)基站覆盖到的村庄所需的赔偿费用。这样做是可能会达到\(O(n^2k)\)的复杂度。考虑如何优化。

对每一个村庄\(i\)求出最左边能够覆盖到它的村庄和最右边能够覆盖到它的村庄(记为\(l[i]\)和\(r[i]\))。那么在\(l[i]\)之前的村庄都无法覆盖到\(i\)。在往\(i+1\)转移的时候,对于村庄\(k\)满足\(r[k]=i\),如果是从\([1,l[k]-1]\)转移过来的话,一定会赔偿\(k\),即\([1,l[k]-1]\)的费用都会增加\(k\)的赔偿。所以,用线段树维护\(f[k][j-1]+cost(k,i)\)的值,同时用邻接表记录\(r[k]=i\)的\(k\),每次转移都区间修改,然后在\([1,i-1]\)中取最小值。

还有一点,由于DP时没有考虑后面的村庄,为了避免漏掉最后一个村庄的情况,我们可以加入第\(n+1\)个村庄,并强制这个村庄上建立第\(k+1\)个基站。

代码

#include <iostream>
#include <cstdio>
#include <algorithm>
#define N 20002
using namespace std;
const int inf=1<<30;
struct SegmentTree{
int dat,add;
}t[N*4];
int head[N],ver[N*2],nxt[N*2],tot;
int n,k,i,j,x,d[N],c[N],s[N],w[N],l[N],r[N],f[N];
int read()
{
char c=getchar();
int w=0;
while(c<'0'||c>'9') c=getchar();
while(c<='9'&&c>='0'){
w=w*10+c-'0';
c=getchar();
}
return w;
}
void insert(int x,int y)
{
tot++;
ver[tot]=y;
nxt[tot]=head[x];
head[x]=tot;
}
void build(int p,int l,int r)
{
t[p].add=t[p].dat=0;
if(l==r){
t[p].dat=f[l];
return;
}
int mid=(l+r)/2;
build(p*2,l,mid);
build(p*2+1,mid+1,r);
t[p].dat=min(t[p*2].dat,t[p*2+1].dat);
}
void spread(int p)
{
if(t[p].add){
t[p*2].dat+=t[p].add;
t[p*2+1].dat+=t[p].add;
t[p*2].add+=t[p].add;
t[p*2+1].add+=t[p].add;
t[p].add=0;
}
}
void change(int p,int l,int r,int ql,int qr,int x)
{
if(ql>qr) return;
if(ql<=l&&r<=qr){
t[p].dat+=x;
t[p].add+=x;
return;
}
int mid=(l+r)/2;
spread(p);
if(ql<=mid) change(p*2,l,mid,ql,qr,x);
if(qr>mid) change(p*2+1,mid+1,r,ql,qr,x);
t[p].dat=min(t[p*2].dat,t[p*2+1].dat);
}
int ask(int p,int l,int r,int ql,int qr)
{
if(ql>qr) return 0;
if(ql<=l&&r<=qr) return t[p].dat;
int mid=(l+r)/2,ans=1<<30;
spread(p);
if(ql<=mid) ans=min(ans,ask(p*2,l,mid,ql,qr));
if(qr>mid) ans=min(ans,ask(p*2+1,mid+1,r,ql,qr));
return ans;
}
int main()
{
n=read(),k=read();
for(i=2;i<=n;i++) d[i]=read();
for(i=1;i<=n;i++) c[i]=read();
for(i=1;i<=n;i++) s[i]=read();
for(i=1;i<=n;i++) w[i]=read();
n++;k++;
d[n]=w[n]=inf;
for(i=1;i<=n;i++){
l[i]=lower_bound(d+1,d+n+1,d[i]-s[i])-d;
r[i]=lower_bound(d+1,d+n+1,d[i]+s[i])-d;
if(d[r[i]]>d[i]+s[i]) r[i]--;
insert(r[i],i);
}
int ans=inf;
for(j=1;j<=k;j++){
if(j==1){
int tmp=0;
for(i=1;i<=n;i++){
f[i]=tmp+c[i];
for(x=head[i];x;x=nxt[x]) tmp+=w[ver[x]];
}
}
else{
build(1,1,n);
for(i=1;i<=n;i++){
f[i]=ask(1,1,n,j-1,i-1)+c[i];
for(x=head[i];x;x=nxt[x]) change(1,1,n,1,l[ver[x]]-1,w[ver[x]]);
}
}
ans=min(ans,f[n]);
}
printf("%d\n",ans);
}

[洛谷P2605] ZJOI2016 基站选址的更多相关文章

  1. 洛谷$P2605\ [ZJOI2010]$基站选址 线段树优化$dp$

    正解:线段树优化$dp$ 解题报告: 传送门$QwQ$ 难受阿,,,本来想做考试题的,我还造了个精妙无比的题面,然后今天讲$dp$的时候被讲到了$kk$ 先考虑暴力$dp$?就设$f_{i,j}$表示 ...

  2. 【题解】Luogu P2605 [ZJOI2010]基站选址

    原题传送门:P2604 [ZJOI2010]基站选址 看一眼题目,变知道这题一定是dp 设f[i][j]表示在第i个村庄修建第j个基站且不考虑i+1~n个村庄的最小费用 可以得出f[i][j] = M ...

  3. 洛谷P3348 [ZJOI2016]大森林(LCT,虚点,树上差分)

    洛谷题目传送门 思路分析 最简单粗暴的想法,肯定是大力LCT,每个树都来一遍link之类的操作啦(T飞就不说了) 考虑如何优化算法.如果没有1操作,肯定每个树都长一样.有了1操作,就来仔细分析一下对不 ...

  4. luogu P2605 [ZJOI2010]基站选址 线段树优化dp

    LINK:基站选址 md气死我了l达成1结果一直调 显然一个点只建立一个基站 然后可以从左到右进行dp. \(f_{i,j}\)表示强制在i处建立第j个基站的最小值. 暴力枚举转移 复杂度\(n\cd ...

  5. 洛谷P2605 基站选址

    神TM毒瘤线段树优化DP......新姿势get. 题意:有n个村庄,在里面选不多于k个建立基站. 建立基站要ci的费用.如果一个村庄方圆si内没有基站,那么又要支出wi的费用.求最小费用. 解:很显 ...

  6. 洛谷 P3349 [ZJOI2016]小星星 解题报告

    P3349 [ZJOI2016]小星星 题目描述 小\(Y\)是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用\(m\)条彩色的细线串了起来,每条细线连着两颗小星星. 有一 ...

  7. P2605 [ZJOI2010]基站选址

    题目描述 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di.需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立基站的费用为Ci.如果在距离第i个村庄不超过Si的范 ...

  8. luogu P2605 [ZJOI2010]基站选址

    luogu 先考虑朴素dp,设\(f_{i,j}\)表示在第\(i\)个村庄放了基站,一共放了\(j\)次,且只考虑前面村庄影响的答案.这里可以把\(j\)放在外面枚举,然后从\(f_{k,j-1}( ...

  9. ●洛谷P3348 [ZJOI2016]大森林

    题链: https://www.luogu.org/problemnew/show/P3348 题解: LCT,神题 首先有这么一个结论: 每次的1操作(改变生长点操作),一定只会会对连续的一段区间产 ...

随机推荐

  1. 解决anaconda安装cvxpy失败的方法

    在Windows下安装凸优化包CVXPY 直接在anaconda prompt中输入pip install cvxpy经常会出现安装失败的情况,使用以下方法,亲测成功! 1. 下载所需的whl文件,请 ...

  2. SolidWorks学习笔记5创建基准面,基准线,基准点

    创建基准面 平面偏移方式 点击参考几何体,点击基准面 第一参考选中时,点击一个参考平面,粉色的 通过三个点 通过一个线和不在改线上的点 经过某一个点和某一个平面平行 一个平面绕一个轴(该轴平行或者在平 ...

  3. Emgu 学习(7)threshold ,图像过滤

    Threshold 代码如下 static void Main(String[] args) { Mat img = CvInvoke.Imread(@"C:\Users\dell\Pict ...

  4. 初步了解autoencoder

    初步了解autoencoder 学习自莫烦python 什么是autoencoder? 自编码(autoencoder)是一种神经网络的形式. 例子:一张图片->对其进行打码->最后再将其 ...

  5. Python 入门 之 print带颜色输出

    Python 入门 之 print带颜色输出 1.print带颜色输出书写格式: 开头部分: \033[显示方式; 前景色 ; 背景色 m 结尾部分: \033[0m 详解: 开头部分的三个参数: 显 ...

  6. CSS3面包屑菜单导航

    在线演示 本地下载

  7. CentOS 7系统安装Jenkins

    一.jenkins 介绍 Jenkins是一个开源的.可扩展的持续集成.交付.部署(软件/代码> 的编译.打包.部署)基于web界面的平台. 简单说,就是各种项目的"自动化" ...

  8. java中如果删除导入的jar包,工程出现叹号解决方案

    第一步:在工程上右键 第二步:选中build Path 第三步:选择Configue bulid path 第四步:选择liberary 第五步:鼠标点击带红色叉叉的 第六步:点击edit 第七步:点 ...

  9. js 控制加载|移除 script 与 link 文件

    js 加载 script 文件 /** * 加载 script 文件 * @param src */ function loadScript(src) { var addSign = true; va ...

  10. (转)java并发编程:CopyOnWriteArrayList

    原文链接:http://ifeve.com/java-copy-on-write/ Copy-On-Write简称COW,是一种用于程序设计中的优化策略.其基本思路是,从一开始大家都在共享同一个内容, ...