蒟蒻数学渣呀,根本不会做。

解法是参考 https://blog.csdn.net/xs18952904/article/details/88785210 这位大佬的。

状态的设计和转移如上面博客一样:dp[i]代表当前序列的gcd为i的期望长度。

那么可以写出状态转移方程:dp[i]=(1+(x/m)∑(j|i,j≠i)dp[j]) / (1-(m/i)/m) (写得有点乱,其实和上面大佬的一样的)

这里要说一下的是 x=∑(t=1,t<=m) [ gcd(t,i)==j ]  就是怎么求1<=t<=m 中gcd(t,i)=j的t的个数。

这里考虑莫比乌斯反演:

x=∑(t=1,t<=m)[gcd(t,i)=j]

把j提出来 x=∑(t=1,t<=m/j) [gcd(t,i/j)=1]

代入莫比乌斯性质:x=∑(t=1,t<=m) ∑(d|gcd(t,i/j)) μ(d)

套路,改为枚举d : x=(m/jd)(d|(i/j)) μ(d)

这样就可以求出x了,这道题就可以解决了。

时间复杂度为O(m*log(m)*因子个数)

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=1e5+;
const int MOD=1e9+;
LL m,mu[N],v[N],dp[N]; LL power(LL x,LL p) {
LL ret=;
for (;p;p>>=) {
if (p&) ret=(ret*x)%MOD;
x=(x*x)%MOD;
}
return ret;
} vector<int> fac[N];
void prework() {
for (int i=;i<=m;i++)
for (int j=;j<=m/i;j++)
fac[i*j].push_back(i);
for (int i=;i<=m;i++) mu[i]=,v[i]=;
for (int i=;i<=m;i++) {
if (v[i]) continue;
mu[i]=-;
for (int j=*i;j<=m;j+=i) {
v[j]=;
if ((j/i)%i==) mu[j]=;
else mu[j]*=-;
}
}
} LL calc(LL i,LL j) {
LL ret=;
for (int k=;k<fac[i/j].size();k++) {
int d=fac[i/j][k];
LL tmp=(mu[d]+MOD)%MOD*(m/j/d)%MOD;
ret=(ret+tmp)%MOD;
}
return ret;
} int main()
{
cin>>m;
prework();
LL ans=; dp[]=;
for (int i=;i<=m;i++) {
dp[i]=;
for (int j=;j<fac[i].size();j++) {
if (fac[i][j]==i) continue;
LL x=calc(i,fac[i][j]);
dp[i]=(dp[i]+x*dp[fac[i][j]]%MOD)%MOD;
}
dp[i]=dp[i]*power(m,MOD-)%MOD;
dp[i]=(dp[i]+)%MOD;
dp[i]=(dp[i]*m%MOD*power(m-m/i,MOD-))%MOD;
ans=(ans+dp[i]*power(m,MOD-)%MOD)%MOD;
}
cout<<ans<<endl;
return ;
}

Codeforces - 1139D - Steps to One (概率DP+莫比乌斯反演)的更多相关文章

  1. codeforces#1139D. Steps to One (概率dp+莫比乌斯反演)

    题目链接: http://codeforces.com/contest/1139/problem/D 题意: 在$1$到$m$中选择一个数,加入到一个初始为空的序列中,当序列的$gcd$和为$1$时, ...

  2. Codeforces.1139D.Steps to One(DP 莫比乌斯反演)

    题目链接 啊啊啊我在干什么啊.怎么这么颓一道题做这么久.. 又记错莫比乌斯反演式子了(╯‵□′)╯︵┻━┻ \(Description\) 给定\(n\).有一个初始为空的集合\(S\).令\(g\) ...

  3. CodeForces 24D Broken robot (概率DP)

    D. Broken robot time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...

  4. CodeForces 540D--Bad Luck Island(概率DP)

    貌似竟然是我的第一道概率DP.. 手机码代码真不舒服.... /************************************************ Memory: 67248 KB Ti ...

  5. codeforces 148D Bag of mice(概率dp)

    题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...

  6. Codeforces 809E - Surprise me!(虚树+莫比乌斯反演)

    Codeforces 题目传送门 & 洛谷题目传送门 1A,就 nm 爽( 首先此题一个很棘手的地方在于贡献的计算式中涉及 \(\varphi(a_ia_j)\),而这东西与 \(i,j\) ...

  7. Codeforces 1139D Steps to One dp

    Steps to One 啊, 我要死了, 这种垃圾题居然没写出来, 最后十分钟才发现错在哪. 不知道为什么我以为 对于一个数x , 除了它的因子和它的倍数都是和它互质的, 我脑子是抽了吗? 随便瞎d ...

  8. Codeforces 148D Bag of mice 概率dp(水

    题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...

  9. CodeForces 148D-Bag of mice(概率dp)

    题意: 袋子里有w个白球b个黑球,现在两个人轮流每次取一个球(不放回),先取到白球的获胜,当后手取走一个球时,袋子里的球会随机的漏掉一个,问先手获胜的概率. 分析: dp[i][j]表示袋子中i个白球 ...

随机推荐

  1. SHOW - 显示运行时参数的数值

    SYNOPSIS SHOW name SHOW ALL DESCRIPTION 描述 SHOW 将显示当前运行时参数的数值. 这些变量可以通过 SET 语句来设置,或者通过编辑 postgresql. ...

  2. C#链式编程

    一.基本链式格式 class Program { static void Main(string[] args) { Console.WriteLine("Hello World!" ...

  3. shell input value from console

    echo "Please enter some input: " read input_variable echo "You entered: $input_variab ...

  4. NOIP2016D1T3 换教室 (概率DP)

    NOIP2016D1T3 换教室 题目大意:有n个时间段,每个时间段i有两个教室a[i],b[i]可以上课,如果不申请换教室就在教室a[i]上课,如果换教室就在b[i]上课.你最多只能换m次教室.教室 ...

  5. 巨好看的xshell配色

    推荐字体Lucida console [FlatUI] text=e5e5e5 cyan(bold)=16a085 text(bold)=ecf0f1 magenta=9b59b6 green=2ec ...

  6. c#发送邮件功能

    protected void Page_Load(object sender, EventArgs e)    {        //先到qq邮箱设置中启用smtp服务        Random r ...

  7. shell从字符串中提取子串(正则表达式)

    通过试验,可以通过grep.sed两种方式实现. 假设需要提取libgcc-4.8.5-4.h5.x86_64.rpm中的版本号. grep echo "libgcc-4.8.5-4.h5. ...

  8. php对接极光推送

    首先要明白php对接极光推送要做些什么,极光推送的大致流程是:你的服务器----->极光服务器------>app端.而php要做的就只有我们的服务器到极光服务器这个过程.极光服务器到ap ...

  9. 为什么对象被new 以后在执行dup操作?

    为什么对象被new 以后在执行dup操作? 今天有个朋友问我,为什么一个new一个对象的指令在new后面紧跟的是dup操作?他说搜了可能找到的 搜索引擎都找不到答案,包括翻了<<深入JAV ...

  10. select change()

    $(".learnStageId").change(function(){ var id = $(this).val(); $(".gradeId").find ...