[SDOI2015]排序 题解 (搜索)
Description
小A有一个1-2^N的排列A[1..2^N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1<=i<=N),第i中操作为将序列从左到右划分为2^{N-i+1}段,每段恰好包括2^{i-1}个数,然后整体交换其中两段.小A想知道可以将数组A从小到大排序的不同的操作序列有多少个,小A认为两个操作序列不同,当且仅当操作个数不同,或者至少一个操作不同(种类不同或者操作位置不同).
Input
第一行,一个整数N
Output
一个整数表示答案
Sample Input
7 8 5 6 1 2 4 3
Sample Output
6
正解居然是搜索,考场上看这板儿B是个神仙状压就skip掉了
后悔啊……把猛肝某APIO2016T1的时间放这题上怎么还没30分啊……
手%几组数据可以发现,操作序列的合法性与顺序无瓜
所以只需确定序列中有没有第i种操作,最后将统计结果的阶乘输出即为序列数
枚举操作种数i,+1什么的太麻烦就直接分成$2^{N-i}$段,每段$2^i$个数
然后要交换的话就需要找非严格递增序列($a_{x+1}!=a_x+1$)
超过两个显然不可行,直接return
接下来分类讨论:
如果没有这样的序列,继续dfs
如果有一个,尝试内部一分为二后交换使之满足严格递增
如果有两个,两段分成四段尝试交换
(感谢hzwer的题解 大大减少了我的代码量 两层for分类讨论确实比四个if else美观多辽)
收获:看到二进制不要直接想状压,还有可能是树形结构或者二分搜索
#include<cstdio>
#include<iostream>
#include<cstring>
using namespace std;
const int N=(<<)+;
int n,a[N],tot;
long long ans=,bin[],fac[];
int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
void ini()
{
bin[]=fac[]=;
for(int i=;i<=;i++)
bin[i]=bin[i-]<<,fac[i]=1LL*i*fac[i-];
}
bool judge(int p,int k)
{
for(int j=;j<bin[k];j++)
if(a[p+j]!=a[p+j-]+)return ;
return ;
}
void sw_(int x,int y,int k)
{
for(int i=;i<bin[k];i++)
swap(a[x+i],a[y+i]);
}
void dfs(int p,int val)
{
if(p==n+)
{
ans+=fac[val];
return ;
}
int bl1,bl2;bl1=bl2=;
for(int i=;i<=bin[n];i+=bin[p])
if(!judge(i,p))
{
if(!bl1)bl1=i;
else if(!bl2)bl2=i;
else return ;
}
if(!bl1&&!bl2)dfs(p+,val);
else if(bl1&&!bl2)
{
sw_(bl1,bl1+bin[p-],p-);
dfs(p+,val+);
sw_(bl1,bl1+bin[p-],p-);
}
else
{
for(int num1=;num1<;num1++)
for(int num2=;num2<;num2++)
{
sw_(bl1+num1*bin[p-],bl2+num2*bin[p-],p-);
if(judge(bl1,p)&&judge(bl2,p))
{
dfs(p+,val+);
sw_(bl1+num1*bin[p-],bl2+num2*bin[p-],p-);
break;
}
sw_(bl1+num1*bin[p-],bl2+num2*bin[p-],p-);
}
}
}
int main()
{
n=read();
ini();
for(int i=;i<=bin[n];i++)
a[i]=read();
dfs(,);
cout<<ans<<endl;
return ;
}
[SDOI2015]排序 题解 (搜索)的更多相关文章
- BZOJ 3990: [SDOI2015]排序(搜索+剪枝)
[SDOI2015]排序 Description 小A有一个1-2^N的排列A[1..2^N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1< ...
- [sdoi2015]排序(搜索+剪枝优化)
Description 小A有一个1-2^N的排列A[1..2^N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1<=i<=N),第i中 ...
- [BZOJ3990]:[SDOI2015]排序(搜索)
题目传送门 题目描述 小A有一个1-${2}^{N}$的排列A[1..${2}^{N}$],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1≤i≤N), ...
- BZOJ3990 [SDOI2015]排序 【搜索】
题目 小A有一个1-2^N的排列A[1..2^N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1<=i<=N),第i中操作为将序列从左到 ...
- BZOJ3990:[SDOI2015]排序——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=3990 小A有一个1-2^N的排列A[1..2^N],他希望将A数组从小到大排序,小A可以执行的操作 ...
- BZOJ 3990: [SDOI2015]排序 [搜索]
3990: [SDOI2015]排序 题意:\(2^n\)的一个排列,给你n种操作,第i种把每\(2^{i-1}\)个数看成一段,交换任意两段.问是这个序列有序的操作方案数,两个操作序列不同,当且仅当 ...
- 【LG3322】[SDOI2015]排序
[LG3322][SDOI2015]排序 题面 洛谷 题解 交换顺序显然不影响答案,所以每种本质不同的方案就给答案贡献次数的阶乘. 从小往大的交换每次至多\(4\)中决策,复杂度\(O(4^n)\). ...
- MVC5 + EF6 + Bootstrap3 (11) 排序、搜索、分页
系列教程:MVC5 + EF6 + Bootstrap3 上一节:MVC5 + EF6 + Bootstrap3 (10) 数据查询页面 源码下载:点我下载 我工作的源码:http://www.jin ...
- numpy教程:排序、搜索和计数
http://blog.csdn.net/pipisorry/article/details/51822775 numpy排序.搜索和计数函数和方法.(重新整合过的) ],, , ], [, , ]] ...
随机推荐
- Sqli labs系列-less-5&6 报错注入法(上)
在我一系列常规的测试后发现,第五关和第六关,是属于报错注入的关卡,两关的区别是一个是单引号一个是双引号...当然我是看了源码的.... 基于报错注入的方法,我早就忘的差不多了,,,我记的我最后一次基于 ...
- (转)将SVN从一台服务器迁移到另一台服务器(Windows Server VisualSVN Server)
转:http://blog.sina.com.cn/s/blog_855a24030102xp9q.html 服务器环境: Windows Server 2012 软件版本: VisualSVN-S ...
- Linux下安装Tomcat服务器
Linux下安装Tomcat服务器 一.总结 一句话总结: linux多用才能熟 1.阿里云上面我们买的服务器,怎么让它可以访问特定的端口? 就是给服务器的安全组添加规则:实例-->更多--&g ...
- HTML-参考手册: HTML 语言代码
ylbtech-HTML-参考手册: HTML 语言代码 1.返回顶部 1. HTML 语言代码 参考手册 ISO 语言代码 HTML 的 lang 属性可用于声明网页或部分网页的语言.这对搜索引擎和 ...
- 用 Flask 来写个轻博客 (15) — M(V)C_实现博文页面评论表单
目录 目录 前文列表 实现 post 视图函数 在 posthtml 中添加表单 效果 前文列表 用 Flask 来写个轻博客 (1) - 创建项目 用 Flask 来写个轻博客 (2) - Hell ...
- ubuntu15.4、16.4、17.4设置nginx自启动
ubuntu15.4.16.4.17.4设置nginx自启动记录个小问题,备忘录.花了大半天的时间研究这个,网上大多ubuntu.centos的配置nginx开机自启的都是之前的 Upstart/Sy ...
- ubuntu安装完成后需要做的事情
1.删除libreoffice libreoffice虽然是开源的,但是Java写出来的office执行效率实在不敢恭维,装完系统后果断删掉 [html] view plain copy sudo a ...
- docker 安装 lnmp
docker 安装 lnmp 标签(空格分隔): php,docker 安装MySql 1 搜索镜像 docker search mysql 2 安装镜像 docker pull mysql:5.7 ...
- C/C++程序员 面试经历总结
最近在找工作,遇到了一些面试题,很惭愧的是很多都没答上来. 现在把一些问题总结一下,算是记录一下面试的经历吧.以后有空简单地回答一下, 同时也欢迎各位同仁解答,共同学习一下吧! 一.嵌入式C语言面 ...
- 慎用margin系列3---IE6下3px bug
当我们想让一段文字出现在一个布局块的右边的时候,我们会让布局块向左浮动,然后把段落设置左布局块宽度大小的左空白.比如左布局块是.a{float:left;height: 110px;width: 28 ...