scikit-learn

Machine Learning in Python

  • Simple and efficient tools for data mining and data analysis
  • Accessible to everybody, and reusable in various contexts
  • Built on NumPy, SciPy, and matplotlib
  • Open source, commercially usable - BSD license

http://scikit-learn.org/stable/index.html

sklearn中算法有四类,分类,回归,聚类,降维

分类和回归是监督式学习,即每个数据对应一个 label。

聚类 是非监督式学习,即没有 label。

降维,当数据集有很多很多属性的时候,可以通过 降维 算法把属性归纳起来。例如 20 个属性只变成 2 个,注意,这不是挑出 2 个,而是压缩成为 2 个,它们集合了 20 个属性的所有特征,相当于把重要的信息提取的更好,不重要的信息就不要了。

然后看问题属于哪一类问题,是分类还是回归,还是聚类,就选择相应的算法。 当然还要考虑数据的大小,例如 100K 是一个阈值。

可以发现有些方法是既可以作为分类,也可以作为回归,例如 SGD

 监督学习(supervised learning):监督学习的任务是学习一个模型,使模型能够对任意一个输入给出一个预测的输出,监督学习是统计学的一个重要分支。

from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
#下载iris数据集
iris = datasets.load_iris()
#将数据的data部分和target进行赋值, data包含iris花朵的长宽和茎的长宽
iris_X = iris.data
iris_Y = iris.target
iris_X
Out[9]:
array([[5.1, 3.5, 1.4, 0.2],
[4.9, 3. , 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2],
。。。 。。。
[6.7, 3. , 5.2, 2.3],
[6.3, 2.5, 5. , 1.9],
[6.5, 3. , 5.2, 2. ],
[6.2, 3.4, 5.4, 2.3],
[5.9, 3. , 5.1, 1.8]]) #iris_Y是花的种类,共三种类型
iris_Y
Out[10]:
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]) #将数据分为训练集合测试集, 用到sklearn API train_test_split, test_size=0.3代表测试集占总数据集的30%。
X_train, X_test, y_train, y_test = train_test_split(iris_X, iris_Y, test_size=0.3)
y_train
Out[13]:
array([2, 0, 0, 0, 0, 2, 2, 0, 2, 0, 1, 2, 0, 2, 1, 1, 1, 1, 1, 2, 2, 2,
1, 2, 0, 0, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 1, 0, 0, 1, 1, 1, 0, 0,
0, 0, 0, 2, 0, 0, 2, 2, 0, 2, 2, 2, 1, 2, 1, 2, 0, 0, 2, 2, 0, 2,
0, 2, 0, 1, 1, 1, 2, 0, 2, 1, 2, 1, 2, 2, 0, 1, 2, 0, 1, 2, 0, 0,
2, 0, 1, 1, 2, 2, 0, 0, 1, 2, 1, 1, 2, 0, 0, 0, 1])
X_train
Out[14]:
array([[6.7, 3.1, 5.6, 2.4],
[5.4, 3.4, 1.7, 0.2],
[5.1, 3.8, 1.9, 0.4],
。。。 。。。
[5.4, 3.9, 1.7, 0.4],
[4.6, 3.4, 1.4, 0.3],
[5.5, 3.5, 1.3, 0.2],
[5.5, 2.6, 4.4, 1.2]]) #建立模型
knn = KNeighborsClassifier()
#训练
knn.fit(X_train, y_train)
Out[16]:
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
metric_params=None, n_jobs=1, n_neighbors=5, p=2,
weights='uniform')
#预测
knn.predict(X_test)
Out[17]:
array([0, 0, 2, 2, 1, 2, 0, 0, 1, 1, 0, 2, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0,
0, 0, 2, 2, 2, 0, 1, 0, 2, 2, 1, 1, 1, 2, 2, 0, 1, 0, 2, 1, 2, 1,
1])
#对比预测值和测试值
y_test
Out[18]:
array([0, 0, 2, 1, 1, 2, 0, 0, 2, 1, 0, 2, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0,
0, 0, 2, 1, 2, 0, 1, 0, 2, 2, 1, 1, 1, 2, 2, 0, 1, 0, 2, 1, 2, 1,
1])

AI-sklearn 学习笔记(一)sklearn 一般概念的更多相关文章

  1. .NET Remoting学习笔记(一)概念

    目录 .NET Remoting学习笔记(一)概念 .NET Remoting学习笔记(二)激活方式 .NET Remoting学习笔记(三)信道 背景 自接触编程以来,一直听过这个名词Remotin ...

  2. 【转载】.NET Remoting学习笔记(一)概念

    目录 .NET Remoting学习笔记(一)概念 .NET Remoting学习笔记(二)激活方式 .NET Remoting学习笔记(三)信道 背景 自接触编程以来,一直听过这个名词Remotin ...

  3. 【学习笔记】sklearn数据集与估计器

    数据集划分 机器学习一般的数据集会划分为两个部分: 训练数据:用于训练,构建模型 测试数据:在模型检验时使用,用于评估模型是否有效 训练数据和测试数据常用的比例一般为:70%: 30%, 80%: 2 ...

  4. sklearn学习笔记1

    Image recognition with Support Vector Machines #our dataset is provided within scikit-learn #let's s ...

  5. sklearn学习笔记之简单线性回归

    简单线性回归 线性回归是数据挖掘中的基础算法之一,从某种意义上来说,在学习函数的时候已经开始接触线性回归了,只不过那时候并没有涉及到误差项.线性回归的思想其实就是解一组方程,得到回归函数,不过在出现误 ...

  6. sklearn学习笔记3

    Explaining Titanic hypothesis with decision trees decision trees are very simple yet powerful superv ...

  7. sklearn学习笔记2

    Text classifcation with Naïve Bayes In this section we will try to classify newsgroup messages using ...

  8. sklearn学习笔记

    用Bagging优化模型的过程:1.对于要使用的弱模型(比如线性分类器.岭回归),通过交叉验证的方式找到弱模型本身的最好超参数:2.然后用这个带着最好超参数的弱模型去构建强模型:3.对强模型也是通过交 ...

  9. sklearn学习笔记(一)——数据预处理 sklearn.preprocessing

    https://blog.csdn.net/zhangyang10d/article/details/53418227 数据预处理 sklearn.preprocessing 标准化 (Standar ...

  10. sklearn学习笔记之岭回归

    岭回归 岭回归是一种专用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息.降低精度为代价获得回归系数更为符合实际.更可靠的回归方法,对病 ...

随机推荐

  1. vim插件cscope使用方法

    一.安装cscope 安装方式比较多样,可以在各自linux软件管理工具中安装,也可以去官网下载安装. sudo apt-get install cscope 二.插件安装 这里选择的是Vundle来 ...

  2. NPM错误

    有时突然报下面错误: 本人经验是IP变了...

  3. C# 创建临时文件(转帖)

    1. 在临时文件只能够创建一个临时文件并返回该文件的完整路径 // 在临时文件只能够创建一个临时文件并返回该文件的完整路径: // C:\Documents and Settings\YourName ...

  4. Qt中图元对象的多重集成

    在继承自定义QGraphicsItem图元对象时,有时需要用到信号/槽机制,由于QGraphicsItem非QObject的子类 所以需要多重继承QObject,有一点需要特别注意:就是继承的顺序,一 ...

  5. echarts画环形图

    alarmManage(){ let drawLine = echarts.init(document.getElementById('data-alarmManage-table-wrap')); ...

  6. 深入理解BFC和IFC

    1. 为什么会有BFC和IFC 首先要先了解两个概念:Box和formatting context: Box:CSS渲染的时候是以Box作为渲染的基本单位.Box的类型由元素的类型和display属性 ...

  7. RTP/RTSP编程

    https://blog.csdn.net/pu1030/article/details/7619908 http://blog.chinaunix.net/uid-27875-id-5017161. ...

  8. 图解SQLSERVER联合查询和连接查询的区别

      相信很多人都会用SQLSERVER联合查询和连接查询,但是用起来不一定都得心应手,对于其中的原理可能就模糊不清了,要想很牢固地掌握和运用SQL联合查询和连接查询机制,必须对其根本原理有很清晰认识, ...

  9. 了解SELlinux

    selinux是mac: mandatory access control. 强制访问控制. 是经过了20年的mac研究基础上开发的安全子系统. 访问控制分为三种: dac: di'scretiona ...

  10. 【tensorflow使用笔记一】:安装linux下tensorflow环境的问题

    首先安装Python Python2.7 使用pip安装Python-numpy发现有老版本影响import直接手动删除: 安装default-jdk顺利: 安装matplotlib发现没有tkint ...