好久之前就想学了 然后今天恰巧一道题需要用到就学了

前置芝士

1.主席树[可持久化数组]

2.并查集

如果你掌握了前面两个那么这个东西你就会觉得非常沙茶。。

构造

可持久化并查集 = 主席树  + 并查集

有点蠢= =

当然 我们这里的并查集是要按秩合并的并查集

[按秩合并:就是把dep小的连接到大的上面 这个复杂度分析出来是O(lgn)的 原因不要问我 我不知道= =]

不可以路径压缩 原因好像是可以被极限数据卡掉?[我也不知道路径压缩了你怎么访问历史版本的emm。。]

这样的话 我们每次开log个节点连下来 然后对于每个点维护fa和dep就可以了

然后dep的更新就是 当两个高度一样的时候 连起来那么被连的深度需要+1

就没了qwq。

例题就是BZOJ3673 真·模板

代码。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define inf 20021225
#define ll long long
#define mxn 200010
#define pa pair<int,int>
#define mp make_pair
using namespace std; struct node{int ls,rs,fa,dep;}t[mxn*40];
int cnt,rt[mxn],n;
void build(int &x,int l,int r)
{
x=++cnt;
if(l==r){t[x].fa=l;t[x].dep=1;return;}
int mid=l+r>>1;
build(t[x].ls,l,mid); build(t[x].rs,mid+1,r);
} void insert(int &x,int lt,int l,int r,int d,int fa)
{
x=++cnt; t[x] = t[lt];
if(l==r){t[x].fa = fa; return;}
int mid = l+r>>1;
if(d<=mid) insert(t[x].ls,t[lt].ls,l,mid,d,fa);
else insert(t[x].rs,t[lt].rs,mid+1,r,d,fa);
} void update(int x,int l,int r,int d)
{
if(l==r){t[x].dep++; return;}
int mid = l+r>>1;
if(d<=mid) update(t[x].ls,l,mid,d);
else update(t[x].rs,mid+1,r,d);
} int query(int x,int l,int r,int d)
{
if(l==r) return x;
int mid = l+r>>1;
if(d<=mid) return query(t[x].ls,l,mid,d);
else return query(t[x].rs,mid+1,r,d);
} int find(int root,int x)
{
int pos = query(root,1,n,x);
if(t[pos].fa==x) return pos;
return find(root,t[pos].fa);
} int main()
{
int m,opt,x,y;
scanf("%d%d",&n,&m);
build(rt[0],1,n);
for(int i=1;i<=m;i++)
{
scanf("%d%d",&opt,&x);
if(opt==2){rt[i]=rt[x];continue;}
scanf("%d",&y); rt[i]=rt[i-1];
int fx = find(rt[i],x),fy = find(rt[i],y);
if(opt==1)
{
if(fx!=fy)
{
if(t[fx].dep < t[fy].dep) swap(fx,fy);
int ffx = t[fx].fa , ffy = t[fy].fa;
insert(rt[i],rt[i-1],1,n,ffy,ffx);
if(t[fx].dep == t[fy].dep) update(rt[i],1,n,ffx);
}
}
else printf("%d\n",t[fx].fa==t[fy].fa);
}
return 0;
}

【学习笔记】可持久化并查集(BZOJ3673)的更多相关文章

  1. [学习笔记]可持久化数据结构——数组、并查集、平衡树、Trie树

    可持久化:支持查询历史版本和在历史版本上修改 可持久化数组 主席树做即可. [模板]可持久化数组(可持久化线段树/平衡树) 可持久化并查集 可持久化并查集 主席树做即可. 要按秩合并.(路径压缩每次建 ...

  2. BZOJ3673 可持久化并查集 by zky 【主席树】

    BZOJ3673 可持久化并查集 by zky Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a ...

  3. bzoj3673 & bzoj3674 & 洛谷P3402 可持久化并查集

    题目:bzoj3673:https://www.lydsy.com/JudgeOnline/problem.php?id=3673 bzoj3674:https://www.lydsy.com/Jud ...

  4. bzoj3673可持久化并查集 by zky&&bzoj3674可持久化并查集加强版

    bzoj3673可持久化并查集 by zky 题意: 维护可以恢复到第k次操作后的并查集. 题解: 用可持久化线段树维护并查集的fa数组和秩(在并查集里的深度),不能路径压缩所以用按秩启发式合并,可以 ...

  5. [bzoj3673][可持久化并查集 by zky] (rope(可持久化数组)+并查集=可持久化并查集)

    Description n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0& ...

  6. 【BZOJ-3673&3674】可持久化并查集 可持久化线段树 + 并查集

    3673: 可持久化并查集 by zky Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 1878  Solved: 846[Submit][Status ...

  7. 【BZOJ3673】&&【BZOJ3674】: 可持久化并查集 by zky 可持久化线段树

    没什么好说的. 可持久化线段树,叶子节点存放父亲信息,注意可以规定编号小的为父亲. Q:不是很清楚空间开多大,每次询问父亲操作后修改的节点个数是不确定的.. #include<bits/stdc ...

  8. bzoj3673可持久化并查集

    n个集合 m个操作操作:1 a b 合并a,b所在集合2 k 回到第k次操作之后的状态(查询算作操作)3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0<n,m<=2*10^ ...

  9. 【BZOJ3673/3674】可持久化并查集/可持久化并查集加强版 可持久化线段树

    [BZOJ3674]可持久化并查集加强版 Description Description:自从zkysb出了可持久化并查集后……hzwer:乱写能AC,暴力踩标程KuribohG:我不路径压缩就过了! ...

随机推荐

  1. 如何从word中复制内容到网站后台编辑器中

    word图片转存,是指UEditor为了解决用户从word中复制了一篇图文混排的文章粘贴到编辑器之后,word文章中的图片数据无法显示在编辑器中,也无法提交到服务器上的问题而开发的一个操作简便的图片转 ...

  2. oracle中where子句和having子句中的区别

    1.where  不能放在GROUP BY 后面2.HAVING 是跟GROUP BY 连在一起用的,放在GROUP BY 后面,此时的作用相当于WHERE3.WHERE  后面的条件中不能有聚集函数 ...

  3. Linux下MySQL 5.5的修改字符集编码为UTF8(彻底解决中文乱码问题)

    一.登录MySQL查看用SHOW VARIABLES LIKE 'character%';下字符集,显示如下: +--------------------------+---------------- ...

  4. 为 PhpStorm 配置 Xdebug 来调试代码

    当项目越来越复杂,排错就越发困难. 你以为代码是这么运行的,但就是有未想到的功能导致流程变得不可捉摸. 此时我们需要调试啊调试... PhpStorm 是一款优秀的 PHP IDE,排除其 Java ...

  5. flask-script实现自动刷新页面调试

    本文flask==1.0.2 1.导入extension包 from flask_script import Manager 2.使用manager管理工具 app = Flask(__name__) ...

  6. oracle 数据迁移之数据泵的基本使用

    oracle相同数据库下跨schema的表迁移—expdp/impdp 需求:将GUIDO用户下的表迁移到SCOTT用户下 select * from dba_role_privs where GRA ...

  7. CDN-template

    ylbtech-CDN: 1.返回顶部   2.返回顶部   3.返回顶部   4.返回顶部   5.返回顶部     6.返回顶部   7.返回顶部   8.返回顶部   9.返回顶部   10.返 ...

  8. leetcode 78. 子集(c++)

    给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集). 说明:解集不能包含重复的子集. 示例: 输入: nums = [1,2,3]输出:[ [3],  [1],  [2],  ...

  9. day04—JavaScript之面向对象

    转行学开发,代码100天——2018-03-20 对象是变量的容器,是键值对的容器,也是属性和方法的容器. 万物接对象 1.JavaScript中对象定义的方式 方法一:new Object() // ...

  10. php面向对象重的抽象类,接口类与静态

    static 静态 <?php class ren { public $name; public static $sex; static function shao() { echo " ...