N-dimensional Sphere

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 668    Accepted Submission(s): 234

Problem Description
In an N-dimensional space, a sphere is defined as {(x1, x2 ... xN)| ∑(xi-Xi)^2 = R^2 (i=1,2,...,N) }. where (X1,X2…XN) is the center. You're given N + 1 points on an N-dimensional sphere and are asked to calculate the center of the sphere.
 
Input
The first line contains an integer T which is the number of test cases.
For each case there's one integer N on the first line.
Each of the N+1 following lines contains N integers x1, x2 ... xN describing the coordinate of a point on the N-dimensional sphere.
(0 <= T <= 10, 1 <= N <= 50, |xi| <= 10^17)
 
Output
For the kth case, first output a line contains “Case k:”, then output N integers on a line indicating the center of the N-dimensional sphere
(It's guaranteed that all coordinate components of the answer are integers and there is only one solution and |Xi| <= 10^17)
 
Sample Input
2
2
1 0
-1 0
0 1
3
2 2 3
0 2 3
1 3 3
1 2 4
 
Sample Output
Case 1:
0 0
Case 2:
1 2 3
 
 
 
这条题目的做法很容易想出来 。
凭借 n + 1 个点代入 n 维圆公式, 求圆心 。
然后用第 n + 1 个方程( 设下标为n )  sigma( ( Xi - Oi )^2 )  = R^2 
跟前n 个方程联立容易得到 :
  sigma( ( Xi - Oi )^2 )  =  sigma( ( Yi - Oi )^2 )  
两边都展开然后消掉Oi^2就得到
  sigma(  2*( Xi - Yi )*Oi ) = sigma(  Xi^2 - Yi^2 )  .
得到 n 个这样的 n 元一次方程之后就可以利用高斯消元解决。
 
但首先 fabs( xi ) <= 1e17 的。 大数据的话显然计算过程溢出 。
就用到  sigma( ai * xi ) = an ( % mod ) 来解决。 求得解依然唯一。
 
在高斯消元的过程中会有除法 , 用求逆来解决。
由于数据很大, 欧拉定理会溢 , 那么用扩展欧几里得就OK 。
 
然后还需要将数据加一个偏移差,把所有数据处理成正数 (相当于把整个图形平移了,最后减回来不影响结果)。
避免在取余过程中把(负数+mod)%mod弄成了正。
 
 
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <stack>
#include <algorithm>
using namespace std;
#define root 1,n,1
#define lson l,mid,rt<<1
#define rson mid+1,r,rt<<1|1
#define lr rt<<1
#define rr rt<<1|1
typedef long long LL;
typedef pair<int,int>pii;
#define X first
#define Y second
const int oo = 1e9+;
const double PI = acos(-1.0);
const double eps = 1e- ;
const int N = ;
#define mod 200000000000000003LL
#define dif 100000000000000000LL LL Mod(LL x) {
if (x >= mod) return x - mod;
return x;
}
LL mul(LL a, LL b) {
LL res;
for (res = ; b; b >>= ) {
if (b & )
res = Mod(res + a);
a = Mod(a + a);
}
return res;
} void e_gcd( LL a , LL b , LL &d , LL &x , LL &y ) {
if( !b ){ d = a , x = , y = ; return ; }
e_gcd( b , a%b , d , y , x );
y -= x*(a/b);
} LL inv( LL a , LL n ){
LL d,x,y ;
e_gcd(a,n,d,x,y);
return ( x % n + n ) % n ;
} LL A[N][N] , g[N][N];
int n ; void Gauss() { for( int i = ; i < n ; ++i ) {
int r = i ;
for( int j = i ; j < n ; ++j ) {
if( g[j][i] ) { r = j ; break ; }
}
if( r != i ) for( int j = ; j <= n ; ++j ) swap( g[i][j] , g[r][j] ) ; LL INV = inv( g[i][i] , mod );
for( int k = i + ; k < n ; ++k ) {
if( g[k][i] ) {
LL f = mul( g[k][i] , INV );
for( int j = i ; j <= n ; ++j ) {
g[k][j] -= mul( f , g[i][j] );
g[k][j] = ( g[k][j] % mod + mod ) % mod ;
}
}
}
}
for( int i = n - ; i >= ; --i ){
for( int j = i + ; j < n ; ++j ){
g[i][n] -= mul( g[j][n] , g[i][j] ) , g[i][n] += mod , g[i][n] %= mod ;
}
g[i][n] = mul( g[i][n] , inv( g[i][i] , mod ) );
}
} void Run() { scanf("%d",&n);
memset( g , , sizeof g );
for( int i = ; i <= n ; ++i ) {
for( int j = ; j < n ; ++j ) {
scanf("%I64d",&A[i][j]);
A[i][j] += dif ;
}
} for( int i = ; i < n ; ++i ){
for( int j = ; j < n ; ++j ){
g[i][j] = Mod( A[n][j] - A[i][j] + mod );
g[i][j] = mul( g[i][j] , ) ;
g[i][n] = Mod( g[i][n] + mul( A[n][j] , A[n][j] ) );
g[i][n] = Mod( g[i][n] - mul( A[i][j] , A[i][j] ) + mod );
}
} Gauss();
printf("%I64d",g[][n]-dif);
for( int i = ; i < n ; ++i ){
printf(" %I64d",g[i][n]-dif);
}puts("");
} int main()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif // LOCAL
int cas = , _ ; scanf("%d",&_ );
while( _-- ){
printf("Case %d:\n",cas++); Run();
}
}

HDU 3571 N-dimensional Sphere( 高斯消元+ 同余 )的更多相关文章

  1. HDU.3571.N-dimensional Sphere(高斯消元 模线性方程组)

    题目链接 高斯消元详解 /* $Description$ 在n维空间中给定n+1个点,求一个点使得这个点到所有点的距离都为R(R不给出).点的任一坐标|xi|<=1e17. $Solution$ ...

  2. BZOJ-1013 球形空间产生器sphere 高斯消元+数论推公式

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 1 Sec Memory Limit: 162 MB Submit: 3662 Solved: 1910 [Subm ...

  3. BZOJ 1013: [JSOI2008]球形空间产生器sphere 高斯消元

    1013: [JSOI2008]球形空间产生器sphere Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/Judg ...

  4. HDU 5755 Gambler Bo(高斯消元)

    [题目链接] http://acm.hdu.edu.cn/showproblem.php?pid=5755 [题目大意] 一个n*m由0,1,2组成的矩阵,每次操作可以选取一个方格,使得它加上2之后对 ...

  5. HDU 4818 RP problem (高斯消元, 2013年长春区域赛F题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4818 深深地补一个坑~~~ 现场赛坑在这题了,TAT.... 今天把代码改了下,过掉了,TAT 很明显 ...

  6. ACM学习历程—HDU 3949 XOR(xor高斯消元)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3949 题目大意是给n个数,然后随便取几个数求xor和,求第k小的.(重复不计算) 首先想把所有xor的 ...

  7. lydsy1013: [JSOI2008]球形空间产生器sphere 高斯消元

    题链:http://www.lydsy.com/JudgeOnline/problem.php?id=1013 1013: [JSOI2008]球形空间产生器sphere 时间限制: 1 Sec  内 ...

  8. [bzoj1013][JSOI2008][球形空间产生器sphere] (高斯消元)

    Description 有一个球形空间产生器能够在n维空间中产生一个坚硬的球体.现在,你被困在了这个n维球体中,你只知道球 面上n+1个点的坐标,你需要以最快的速度确定这个n维球体的球心坐标,以便于摧 ...

  9. hdu 5833 Zhu and 772002 高斯消元

    Zhu and 772002 Problem Description Zhu and 772002 are both good at math. One day, Zhu wants to test ...

随机推荐

  1. 基于TI 多核DSP 的大数据智能计算处理解决方案

    北京太速科技有限公司 大数据智能计算,是未来的一个发展趋势,大数据计算系统主要完成数据的存储和管理:数据的检索与智能计算. 特别是在智能城市领域,由于人口聚集给城市带来了交通.医疗.建筑等各方面的压力 ...

  2. 微信小程序(13)--页面滚动到某个位置添加类效果

    微信小程序页面滚动到某个位置添加类,盒子置顶效果. <!-- vh,是指CSS中相对长度单位,表示相对视口高度(Viewport Height),1vh = % * 视口高度 --> &l ...

  3. Python3.5-20190530-unittest模块

    >>> dir(unittest) #所有的属性和方法 ['BaseTestSuite', 'FunctionTestCase', 'SkipTest', 'TestCase', ' ...

  4. 前端每日实战:50# 视频演示如何用纯 CSS 创作一个永动的牛顿摆

    效果预览 按下右侧的"点击预览"按钮可以在当前页面预览,点击链接可以全屏预览. https://codepen.io/comehope/pen/qKmGaJ 可交互视频教程 此视频 ...

  5. create-react-app按需引入antd-mobile

    1.引入 react-app-rewired 并修改 package.json 里的启动配置: npm i react-app-rewired@2.0.2-next.0 // 需要安装低版本 否则np ...

  6. mybatis源码分析之03SqlSession的创建

    在上一篇中,说到了mybatis是如何构造一个SqlSessionFactory实例的,顾名思意,SqlSessionFactory就是用于创建SqlSession的工厂类. 好,现在我们接着昨天的来 ...

  7. 拦截Restful API的三种方式

    如题, 方式有三种. (1). 过滤器filter javaEE规范 (2). 拦截器interceptor springmvc提供 (3). 切片 aspect 一. Filter使用示例 impo ...

  8. Oracle 的trim,ltrim,rtrim函数的区别

    该函数共有两种作用:第一种,即大家都比较熟悉的去除空格.例子:--TRIM去除指定字符的前后空格SQL> SELECT TRIM(' dd df ') FROM dual;TRIM('DDDF' ...

  9. qt编程参考资料

    https://qtguide.ustclug.org/

  10. react教程 — redux

    一.概念:             http://caibaojian.com/react/redux-basic.html   或  https://www.cnblogs.com/maopixin ...