人员雇佣

Time Limit: 20 Sec  Memory Limit: 259 MB
[Submit][Status][Discuss]

Description

  作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司。这些经理相互之间合作有一个贡献指数,(我们用Ei,j表示i经理对j经理的了解程度),即当经理i和经理j同时被雇佣时,经理i会对经理j做出贡献,使得所赚得的利润增加Ei,j。当然,雇佣每一个经理都需要花费一定的金钱Ai,对于一些经理可能他做出的贡献不值得他的花费,那么作为一个聪明的人,小L当然不会雇佣他。 然而,那些没有被雇佣的人会被竞争对手所雇佣,这个时候那些人会对你雇佣的经理的工作造成影响,使得所赚得的利润减少Ei,j(注意:这里的Ei,j与上面的Ei,j 是同一个)。 作为一个效率优先的人,小L想雇佣一些人使得净利润最大。你可以帮助小L解决这个问题吗?

Input

  第一行有一个整数N<=1000表示经理的个数 第二行有N个整数Ai表示雇佣每个经理需要花费的金钱 接下来的N行中一行包含N个数,表示Ei,j,即经理i对经理j的了解程度。(输入满足Ei,j=Ej,i)

Output

  第一行包含一个整数,即所求出的最大值。

Sample Input

  3
  3 5 100
  0 6 1
  6 0 2
  1 2 0

Sample Output

  1

HINT

  20%的数据中 N<=10
  50%的数据中 N<=100
  100%的数据中 N<=1000 , Ei,j<=maxlongint , Ai<=maxlongint

Main idea

  给定若干关系,选择一个人需要固定的费用,对于i,j,选择了其中一个则损失E[i][j],两个都选了则获得2*E[i][j],问能获得的最大价值。

Solution

  显然就是一个最小割的模型,我们直接套用论文里面的模型即可。

  针对于这道题,我们对于代价建图,用Ans=总和-最小代价即可。

  对于第i个点,如果选了,会损失a[i],连边(S,i,a[i]):表示选了它之后的代价;如果不选,会损失ΣE[i][j],所以连边(i,T,ΣE[i][j]),表示不选的损失。

  然后对于一对点i,j,连边(i,j,2*E[i][j]),表示如果不选i,选了j的话,本来i中选j的利益得不到,又要损失j对i的影响为E[i][j],一共损失了2*E[i][j]。

  然后求一下最小割即可。

Code

 #include<iostream>
#include<string>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<map>
using namespace std; typedef long long s64;
const int ONE=;
const s64 INF=; int n,x;
s64 res;
int tou,wei,S,T;
int Dep[ONE],q[],E[ONE];
int next[ONE],first[ONE],go[ONE],tot;
s64 w[ONE];
s64 Ans; int get()
{
int res=,Q=;char c;
while( (c=getchar())< || c> )
if(c=='-')Q=-;
res=c-;
while( (c=getchar())>= && c<= )
res=res*+c-;
return res*Q;
} int Add(int u,int v,s64 z)
{
next[++tot]=first[u]; first[u]=tot; go[tot]=v; w[tot]=z;
next[++tot]=first[v]; first[v]=tot; go[tot]=u; w[tot]=;
} int Bfs()
{
memset(Dep,,sizeof(Dep));
tou=; wei=;
q[]=S; Dep[S]=;
for(int i=S;i<=T;i++) E[i]=first[i];
while(tou<wei)
{
int u=q[++tou];
for(int e=first[u];e;e=next[e])
{
int v=go[e];
if(Dep[v] || !w[e]) continue;
Dep[v]=Dep[u]+;
q[++wei]=v;
}
}
return (Dep[T]>);
} s64 Dfs(int u,s64 Limit)
{
if(u==T || !Limit) return Limit;
s64 from=,f;
for(int &e=E[u];e;e=next[e])
{
int v=go[e];
if(Dep[v]!=Dep[u]+ || !w[e]) continue;
f=Dfs(v,min(Limit,w[e]));
w[e]-=f;
w[((e-)^)+]+=f;
Limit-=f;
from+=f;
if(!Limit) break;
}
return from;
} int main()
{
n=get();
S=; T=n+;
for(int i=;i<=n;i++)
{
x=get();
Add(S,i,x);
} for(int i=;i<=n;i++)
{
res=;
for(int j=;j<=n;j++)
{
x=get();
res+=x; Ans+=x;
Add(i,j,*x);
}
Add(i,T,res);
} while(Bfs()) Ans-=Dfs(S,INF); printf("%lld",Ans); }

【BZOJ2039】【2009国家集训队】人员雇佣 [最小割]的更多相关文章

  1. 【BZOJ2039】[2009国家集训队]employ人员雇佣 最小割

    [BZOJ2039][2009国家集训队]employ人员雇佣 Description 作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司.这些经理相互之间合作有一个贡献 ...

  2. bzoj2039: [2009国家集训队]employ人员雇佣(最小割)

    传送门 膜一下大佬->这里 不难看出这是一个最小割的模型(然而我看不出来) 我们从源点向每一个点连边,容量为他能带来的总收益(也就是他能对其他所有经理产生的贡献) 然后从每一个点向汇点连边,容量 ...

  3. BZOJ 2039 / Luogu P1791 [2009国家集训队]employ人员雇佣 (最小割)

    题面 BZOJ传送门 Luogu传送门 分析 考虑如何最小割建图,因为这仍然是二元关系,我们可以通过解方程来确定怎么建图,具体参考论文 <<浅析一类最小割问题 湖南师大附中 彭天翼> ...

  4. BZOJ2039 [2009国家集训队]employ人员雇佣

    AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=2039 鉴于一开始看题如果不仔细是看不懂题目的,还是说一下题目大意 [题目大意]:给定n个人 ...

  5. BZOJ 2039 人员雇佣(最小割)

    最小割的建图模式一般是,先算出总收益,然后再通过网络模型进行割边减去部分权值. 然后我们需要思考什么才能带来收益,什么才能有权值冲突. s连向选的点,t连向不选的点,那么收益的减少量应该就是将s集和t ...

  6. luoguP1791 [国家集训队]人员雇佣

    题意 考虑先将所有价值加上,之后用最小割求最小代价. 考虑每个点对\((i,j)\),我们这样建边: 1.源点向每个点i连\(\sum\limits E_{i,j}\)容量的边. 2.每个点向汇点连雇 ...

  7. BZOJ_2039_[2009国家集训队]employ人员雇佣_ 最小割

    BZOJ_2039_[2009国家集训队]employ人员雇佣_ 最小割 Description 作为一个富有经营头脑的富翁,小L决定从本国最优秀的经理中雇佣一些来经营自己的公司.这些经理相互之间合作 ...

  8. 【BZOJ 2039】 2039: [2009国家集训队]employ人员雇佣 (最小割)

    2039: [2009国家集训队]employ人员雇佣 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1511  Solved: 728 Descri ...

  9. BZOJ 2039: [2009国家集训队]employ人员雇佣

    2039: [2009国家集训队]employ人员雇佣 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 1369  Solved: 667[Submit ...

随机推荐

  1. SharePoint显示错误信息

         在SharePoint项目中,一般如果发生错误,SharePoint会弹出它自定义的报错页面,一般就显示"Something went wrong",如果光是看这一句话, ...

  2. fildder抓包工具详解

    fildder页面介绍名称和含义 名称 含义 # 抓取HTTP Request的顺序,从1开始,以此递增 Result HTTP状态码 Protocol 请求使用的协议,如HTTP/HTTPS/FTP ...

  3. result returns more than one elements此种错误,解决

    场景:公司产品开发完成后,接入第三方厂商,在进行接口联调的时候出现此问题.此接口报文中的每一个数据都要进行校验,有些是与已经存入产品数据库中的数据进行对比,看是否存在. 问题:在测试中,有些测试没有问 ...

  4. bzoj1367 可并堆

    题面 参考:<左偏树的特点及运用--黄河源> 我们将这个数列划为很多个互不相交的区间,每一段区间内的 \(b\) 是相等的,即 \(b[l[i]]=b[l[i]+1]=...=b[r[i] ...

  5. 数据结构14——AC自动机

    一.相关介绍 知识要求 字典树Trie KMP算法 AC自动机 多模式串的字符匹配算法(KMP是单模式串的字符匹配算法) 单模式串问题&多模式串问题 单模就是给你一个模式串,问你这个模式串是否 ...

  6. Android Service 服务(二)—— BroadcastReceiver

    (转自:http://blog.csdn.net/ithomer/article/details/7365147) 一. BroadcastReceiver简介 BroadcastReceiver,用 ...

  7. 软工实践 - 第二十八次作业 Beta 冲刺(6/7)

    队名:起床一起肝活队 组长博客:https://www.cnblogs.com/dawnduck/p/10146478.html 作业博客:班级博客本次作业的链接 组员情况 组员1(队长):白晨曦 过 ...

  8. 基于JWT的无状态分布式授权【本文摘自智车芯官网】

    简介 JWT是一种用于HTTP交互双方之间传递安全信息的简洁的.安全的表述性声明规范.JWT作为一个开发的标准,它定义了一种简洁的,自包含的方法用于通信双发之间以JSON形式安全传递.且因为数字证书的 ...

  9. Friends and Enemies(思维)

    Friends and Enemies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Othe ...

  10. PHPExcel 导出包含图片excel

    <?php // 这里用的PHPExcel版本号为1.8.0 // 下载地址https://github.com/PHPOffice/PHPExcel 下载ZIP压缩包 // 下载后将Class ...