最近一直在学习数论,讲得很快,害怕落实的不好,所以做一道luogu的同余方程练练手。

关于x的同余方程

ax ≡ 1 mod m

那么x其实就是求a关于m的乘法逆元

ax + my = 1

对于这个不定方程的全部解是

{ x = x0 + m/gcd(a,m)

{ y = y0 - a/gcd(a,m)

我们可以用exgcd来求出其中的一组特解x0

那么什么是exgcd?

先不考虑exgcd,假设当前我们要处理的是求出 a 和 b的最大公约数,并求出 x 和 y 使得 a*x + b*y= gcd ,而我们已经求出了下一个状态:b 和 a%b 的最大公约数,并且求出了一组x1 和y1 使

得: b*x1 + (a%b)*y1 = gcd

那么我们看 a%b = (a-(a/b)*b)

所以
gcd = b*x1 + (a%b)*y1
= b*x1 + (a-(a/b)*b)*y1
= b*x1 + a*y1 – (a/b)*b*y1
= a*y1 + b*(x1 – a/b*y1)

那么我们对比前面一组 a*x + b*y = gcd

在这里 x = y1

y = x1 - a/b*y1

所以我们就可以递归来求exgcd了。

在gcd当中,gcd(a,b) = gcd(b,a%b)

那么exgcd的代码其实也多不了多少

 #include <cstdio>
#include <algorithm>
#include <iostream>
#define ll long long
using namespace std;
ll a, b, x, y, k, ans;
int exgcd(ll a, ll b)
{
if(b == )
{
x = ; y = ;
return a;
}
exgcd(b,a%b);
k = x;
x = y;
y = k - a/b * y;
return x;
}
int main()
{
cin>>a>>b;
ans = exgcd(a,b);
cout<<(ans+b)%b;
return ;
}

其实你看gcd的代码这么短,肯定是背过的吧(#滑稽),exgcd也长不了多少,不行就背过吧(逃

【luogu P1082 同余方程】 题解的更多相关文章

  1. Luogu P1082 同余方程(NOIP 2012) 题解报告

    题目传送门 [题目大意] 求关于x的同余方程 ax≡1(mod b)的最小整数解. [思路分析] 由同余方程的有关知识可得,ax≡1(mod b)可以化为ax+by=1,此方程有解当且仅当gcd(a, ...

  2. 洛谷P1082 同余方程 题解

    题目链接:https://www.luogu.com.cn/problem/P1082 题目大意: 求关于 \(x\) 的同余方程 ax≡1(mod b) 的最小正整数解. 告诉你 \(a,b\) 求 ...

  3. [Luogu P1082]同余方程

    题目链接 这道题求关于x的同余方程ax≡1(mod b)的最小正整数解.换而言之方程可以转换为ax+by=1,此时有y为负数.此时当且仅当gcd(a,b)|1时,方程有整数解. 于是乎这道题就变成了a ...

  4. luogu P1082 同余方程 |扩展欧几里得

    题目描述 求关于 x的同余方程 ax≡1(modb) 的最小正整数解. 输入格式 一行,包含两个正整数 a,ba,b,用一个空格隔开. 输出格式 一个正整数 x,即最小正整数解.输入数据保证一定有解. ...

  5. Luogu P1082 同余方程(exgcd模版)

    传送门 求ax%b = 1,即ax - by = 1: 很明显这是一个exgcd的形式. 那么要做这道题,首先需要gcd和exgcd的算法作铺垫. gcd(辗转相膜法): int gcd(int a, ...

  6. 洛谷 P1082 同余方程 题解

    每日一题 day31 打卡 Analysis 题目问的是满足 ax mod b = 1 的最小正整数 x.(a,b是正整数) 但是不能暴力枚举 x,会超时. 把问题转化一下.观察 ax mod b = ...

  7. 洛谷——P1082 同余方程

    P1082 同余方程 题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输 ...

  8. 洛谷P1082 同余方程 [2012NOIP提高组D2T1] [2017年6月计划 数论06]

    P1082 同余方程 题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输 ...

  9. 洛谷 P1082 同余方程 —— exgcd

    题目:https://www.luogu.org/problemnew/show/P1082 用 exgcd 即可. 代码如下: #include<iostream> #include&l ...

随机推荐

  1. HashMap的结构算法及代码分析

    HashMap算是日常开发中最长用的类之一了,我们应该了解它的结构跟算法: 参考文章: http://blog.csdn.net/vking_wang/article/details/14166593 ...

  2. Android中的ListView点击时的背景颜色设置

    想设置listview中每行在点击.选中等不同状态下有不同的背景颜色,或者背景图片. 这可以用Android的Selector来实现.它可以定义组件在不同状态下的显示方式. 新建一个xml文件list ...

  3. Unity3d Attribute 总结

    举两个例子,在变量上使用[SerializeFiled]属性,可以强制让变量进行序列化,可以在Unity的Editor上进行赋值. 在Class上使用[RequireComponent]属性,就会在C ...

  4. Python 集合(set)类型的操作——并交差

    介绍 python的set是一个无序不重复元素集,基本功能包括关系测试和消除重复元素. 集合对象还支持并.交.差.对称差等. sets 支持 x in set. len(set).和 for x in ...

  5. 分页存储过程ROW_NUMBER() over(order by pid desc)

    分页存储过程 : create proc usp_GetMyPhotos  @pageIndex int,   --当前页码  @pageSize int,   --每页多少条  @pageCount ...

  6. FileUpload一键自动上传

    背景 源程序二次修改 传统的Asp.net WebForm开发 上传控件样式可自定义 分析 不能用第三方插件,因为源程序开发模式对异步的支持不友好而第三方插件大都是针对异步编程的 兼容IE8及以上和其 ...

  7. My eclipse jdk unbound的解决

    project --> properties --> java build path --> 双击出错的jdk --> alternate jre --> install ...

  8. select, poll, epoll笔记

    看网络通信框架,netty, thrift,java nio等,最后都会通过select, poll, epoll或者socket等进行通信.查了些网页,总结一下.做个笔记 1. Socket单线程阻 ...

  9. Spring课程 Spring入门篇 4-4 Spring bean装配(下)之Autowired注解说明3 多选一 qualifier

    本节主要讲述以下内容: 1 简述 2 代码演练 2.1 注解qualifier运用 1 简述 1.1 何种情况使用qualifier注解? a 按类型自动装配多个bean实例,可以用@qualifie ...

  10. mysql六:mysql内置功能(视图、触发器、事务、存储过程、函数)

    一.视图 视图是一个虚拟表(非真实存在),其本质是[根据SQL语句获取动态的数据集,并为其命名],用户使用时只需使用[名称]即可获取结果集,可以将该结果集当做表来使用. 通过使用视图可以把查询过程中的 ...