任意门:http://poj.org/problem?id=3185

The Water Bowls
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 7676   Accepted: 3036

Description

The cows have a line of 20 water bowls from which they drink. The bowls can be either right-side-up (properly oriented to serve refreshing cool water) or upside-down (a position which holds no water). They want all 20 water bowls to be right-side-up and thus use their wide snouts to flip bowls.

Their snouts, though, are so wide that they flip not only one bowl but also the bowls on either side of that bowl (a total of three or -- in the case of either end bowl -- two bowls).

Given the initial state of the bowls (1=undrinkable, 0=drinkable -- it even looks like a bowl), what is the minimum number of bowl flips necessary to turn all the bowls right-side-up?

Input

Line 1: A single line with 20 space-separated integers

Output

Line 1: The minimum number of bowl flips necessary to flip all the bowls right-side-up (i.e., to 0). For the inputs given, it will always be possible to find some combination of flips that will manipulate the bowls to 20 0's.

Sample Input

0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0

Sample Output

3

Hint

Explanation of the sample:

Flip bowls 4, 9, and 11 to make them all drinkable: 
0 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 [initial state] 
0 0 0 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 [after flipping bowl 4] 
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 [after flipping bowl 9] 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 [after flipping bowl 11]

Source

题意概括:

N个开关,打开一个开关相邻的开关状态会取反,给一个初始的所有开关状态,要求求出最小的改变开关的次数使得所有开关的状态为关闭;

解题思路:

构造增广矩阵类似于根据开关的关系构造有向图的邻接矩阵;

构造增广矩阵,高斯消元,枚举自由元(二进制枚举状态),寻找最小值;

AC code:

 #include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <cmath>
#define INF 0x3f3f3f3f
#define LL long long
using namespace std;
const int MAXN = ;
int a[MAXN][MAXN]; //增广矩阵
int freeX[MAXN]; //自由元
int x[MAXN]; //解集
int equ, var;
int free_num;
int N; int Gauss()
{
int maxRow, col, k;
free_num = ;
for(k = , col = ; k < equ && col < var; k++, col++){
maxRow = k;
for(int i = k+; i < equ; i++){
if(abs(a[i][col]) > abs(a[maxRow][col])){
maxRow = i;
}
} if(a[maxRow][col] == ){
k--;
freeX[free_num++] = col;
continue;
}
if(maxRow != k){
for(int j = col; j < var+; j++){
swap(a[k][j], a[maxRow][j]);
}
} for(int i = k+; i < equ; i++){
if(a[i][col] != ){
for(int j = col; j < var+; j++)
a[i][j] ^= a[k][j]; }
}
} for(int i = k; i < equ; i++) //无解
if(a[i][col] != ) return -; if(k < var) return var-k; //多解返回自由元个数 for(int i = var-; i >= ; i--){ //唯一解,回代
x[i] = a[i][var];
for(int j = i+; j < var; j++){
x[i] ^= (a[i][j] && x[j]);
}
}
return ;
} void solve()
{
int t = Gauss();
if(t == -){ //无解的情况,其实题目保证有解
printf("inf\n");
return;
}
else if(t == ){ //唯一解
int ans = ;
for(int i = ; i < N; i++){
ans += x[i];
}
printf("%d\n", ans);
return;
}
else{ //多解,枚举自由元
int ans = INF;
int tot = (<<t);
for(int i = ; i < tot; i++){
int cnt = ;
for(int j = ; j < t; j++){
if(i&(<<j)){
x[freeX[j]] = ;
cnt++;
}
else x[freeX[j]] = ;
} for(int j = var-t-; j >= ; j--){
int index;
for(index = j; index < var; index++)
if(a[j][index])
break;
x[index] = a[j][var]; for(int s = index+; s < var; s++)
if(a[j][s])
x[index] ^= x[s];
cnt += x[index];
}
ans = min(ans, cnt);
}
printf("%d\n", ans);
}
return;
} int main()
{
N = ;
equ = ;
var = ;
memset(a, , sizeof(a));
memset(x, , sizeof(x));
for(int i = ; i < N; i++){
a[i][i] = ;
if(i > ) a[i-][i] = ;
if(i < N-) a[i+][i] = ;
}
for(int i = ; i < N; i++){
scanf("%d", &a[i][N]);
}
solve();
return ;
}

POJ 3185 The Water Bowls 【一维开关问题 高斯消元】的更多相关文章

  1. POJ 3185 The Water Bowls(高斯消元-枚举变元个数)

    题目链接:http://poj.org/problem?id=3185 题意:20盏灯排成一排.操作第i盏灯的时候,i-1和i+1盏灯的状态均会改变.给定初始状态,问最少操作多少盏灯使得所有灯的状态最 ...

  2. poj 3185 The Water Bowls

    The Water Bowls 题意:给定20个01串(最终的状态),每个点变化时会影响左右点,问最终是20个0所需最少操作数? 水题..直接修改增广矩阵即可:看来最优解不是用高斯消元(若是有Gaus ...

  3. POJ 3185 The Water Bowls (高斯消元)

    题目链接 题意:翻译过来就是20个0或1的开关,每次可以改变相邻三个的状态,问最小改变多少次使得所有开关都置为0,题目保证此题有解. 题解:因为一定有解,所以我们可以正序逆序遍历两次求出较小值即可.当 ...

  4. POJ 1830 开关问题 高斯消元,自由变量个数

    http://poj.org/problem?id=1830 如果开关s1操作一次,则会有s1(记住自己也会变).和s1连接的开关都会做一次操作. 那么设矩阵a[i][j]表示按下了开关j,开关i会被 ...

  5. POJ - 1681: Painter's Problem (开关问题-高斯消元)

    pro:开关问题,同上一题. 不过只要求输出最小的操作步数,无法完成输出“inf” sol:高斯消元的解对应的一组合法的最小操作步数. #include<bits/stdc++.h> #d ...

  6. POJ - 1222: EXTENDED LIGHTS OUT (开关问题-高斯消元)

    pro:给定5*6的灯的状态,如果我们按下一个灯的开关,它和周围4个都会改变状态.求一种合法状态,使得终状态全为关闭: sol:模2意义下的高斯消元. 终于自己手打了一个初级板子. #include& ...

  7. poj 3185 The Water Bowls(反转)

    Description The cows have a line of water bowls water bowls to be right-side-up and thus use their w ...

  8. POJ 3185 The Water Bowls (高斯消元 求最小步数)

    题目链接 题意:有20个数字,0或1.如果改变一个数的状态,它左右两边的两个数的状态也会变反.问从目标状态到全0,至少需要多少次操作. 分析: 和上一题差不多,但是比上一题还简单,不多说了,但是在做题 ...

  9. poj 3185 The Water Bowls 高斯消元枚举变元

    题目链接 给一行0 1 的数, 翻转一个就会使他以及它左右两边的都变, 求最少多少次可以变成全0. 模板题. #include <iostream> #include <vector ...

随机推荐

  1. 读取日志文件,搜索关键字,打印关键字前5行。yield、deque实例

    from collections import deque def search(lines, pattern, history=5): previous_lines = deque(maxlen=h ...

  2. 牛客网Java刷题知识点之Map的两种取值方式keySet和entrySet、HashMap 、Hashtable、TreeMap、LinkedHashMap、ConcurrentHashMap 、WeakHashMap

    不多说,直接上干货! 这篇我是从整体出发去写的. 牛客网Java刷题知识点之Java 集合框架的构成.集合框架中的迭代器Iterator.集合框架中的集合接口Collection(List和Set). ...

  3. 安装cloudermanager时出现org.spingframework.web.bind.***** host[] is not present at AnnotationMethodHandlerAdapter.java line 738 ****错误(图文详解)(博主推荐)

    不多说,直接上干货! 首先,这个问题,写给需要帮助的朋友们,本人在此,搜索资料近半天,才得以解决.看过国内和国外,资料甚少.特此,写此博客,为了弥补此错误解决的资料少的缘故! 问题详解  解决办法   ...

  4. C#的split()分割字符串

    简单的说: 在C#中 str.Split("===="); //这样是错误的,只能 str.Split('=');//参数只能是char类型的,不能是字符串的 如果非得要以字符串分 ...

  5. PHP中break及continue两个流程控制指令解析

    <?php $arr = array( 'a' => '0a0', 'b' => '0b0', 'c' => '0c0', 'd' => '0d0', 'e' => ...

  6. maven pom.xml指定jdk

    <plugins> <!-- 指定jdk --> <plugin> <groupId>org.apache.maven.plugins</grou ...

  7. 记自己的hexo个人博客

    https://othercoding.github.io/

  8. 深入理解JavaScript系列(26):设计模式之构造函数模式

    介绍 构造函数大家都很熟悉了,不过如果你是新手,还是有必要来了解一下什么叫构造函数的.构造函数用于创建特定类型的对象——不仅声明了使用的对象,构造函数还可以接受参数以便第一次创建对象的时候设置对象的成 ...

  9. java常用API之Calendar类

    Calendar是日历类,该类将所有可能用到的时间信息封装为静态成员变量,方便获取. Calendar为抽象类,由于语言敏感性,Calendar类在创建对象时并非直接创建,而是通过静态方法创建,将语言 ...

  10. jQuery Ajax(异步改同步)

    在实际使用中,我们经常会用的Ajax(异步加载,在不刷新整个网页的前提下对网页部分内容进行更新) 使用时,偶尔会遇上需要从一个接口中得到一个数组和数据对应的id,在另一个接口上再得到数据,最初写法如下 ...