A.Slightly Decreasing Permutations

Permutation p is an ordered set of integers p1,  p2,  ...,  pn, consisting of n distinct positive integers, each of them doesn't exceed n. We'll denote the i-th element of permutation p as pi. We'll call number n the size or the length of permutation p1,  p2,  ...,  pn.

The decreasing coefficient of permutation p1, p2, ..., pn is the number of such i (1 ≤ i < n), that pi > pi + 1.

You have numbers n and k. Your task is to print the permutation of length n with decreasing coefficient k.

Input

The single line contains two space-separated integers: n, k (1 ≤ n ≤ 105, 0 ≤ k < n) — the permutation length and the decreasing coefficient.

Output

In a single line print n space-separated integers: p1, p2, ..., pn — the permutation of length n with decreasing coefficient k.

If there are several permutations that meet this condition, print any of them. It is guaranteed that the permutation with the sought parameters exists.

Examples
Input

Copy
5 2
Output

Copy
1 5 2 4 3
Input

Copy
3 0
Output

Copy
1 2 3
Input

Copy
3 2
Output

Copy
3 2 1
构造题;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<time.h>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 2000005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 100000007;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int n, k; int main()
{
ios::sync_with_stdio(0);
cin >> n >> k;
if (k == 0) {
for (int i = 1; i <= n; i++)cout << i << ' ';
return 0;
} for (int i = 1; i < n - k; i++) {
cout << i << ' ';
}
for (int i = n; i >= n - k; i--)cout << i << ' '; return 0;
}
B. Find Marble
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Petya and Vasya are playing a game. Petya's got n non-transparent glasses, standing in a row. The glasses' positions are indexed with integers from 1 to n from left to right. Note that the positions are indexed but the glasses are not.

First Petya puts a marble under the glass in position s. Then he performs some (possibly zero) shuffling operations. One shuffling operation means moving the glass from the first position to position p1, the glass from the second position to position p2 and so on. That is, a glass goes from position i to position pi. Consider all glasses are moving simultaneously during one shuffling operation. When the glasses are shuffled, the marble doesn't travel from one glass to another: it moves together with the glass it was initially been put in.

After all shuffling operations Petya shows Vasya that the ball has moved to position t. Vasya's task is to say what minimum number of shuffling operations Petya has performed or determine that Petya has made a mistake and the marble could not have got from position s to position t.

Input

The first line contains three integers: n, s, t (1 ≤ n ≤ 105; 1 ≤ s, t ≤ n) — the number of glasses, the ball's initial and final position. The second line contains n space-separated integers: p1, p2, ..., pn (1 ≤ pi ≤ n) — the shuffling operation parameters. It is guaranteed that all pi's are distinct.

Note that s can equal t.

Output

If the marble can move from position s to position t, then print on a single line a non-negative integer — the minimum number of shuffling operations, needed to get the marble to position t. If it is impossible, print number -1.

Examples
Input

Copy
4 2 1
2 3 4 1
Output

Copy
3
Input

Copy
4 3 3
4 1 3 2
Output

Copy
0
Input

Copy
4 3 4
1 2 3 4
Output

Copy
-1
Input

Copy
3 1 3
2 1 3
Output

Copy
-1
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<time.h>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 100000007;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int n, s, t;
int p[maxn]; int main()
{
// ios::sync_with_stdio(0);
n = rd(); s = rd(); t = rd();
for (int i = 1; i <= n; i++)p[i] = rd();
if (s == t) {
puts("0"); return 0;
}
bool fg = 1;
int cnt = 0;
int pos = s;
while (1) {
pos = p[pos]; cnt++;
if (pos == s) {
fg = 0; break;
}
else if (pos == t) {
break;
}
}
if (fg == 0)cout << -1 << endl;
else {
cout << cnt << endl;
}
return 0;
}
C. Building Permutation
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Permutation p is an ordered set of integers p1,  p2,  ...,  pn, consisting of n distinct positive integers, each of them doesn't exceed n. We'll denote the i-th element of permutation p as pi. We'll call number n the size or the length of permutation p1,  p2,  ...,  pn.

You have a sequence of integers a1, a2, ..., an. In one move, you are allowed to decrease or increase any number by one. Count the minimum number of moves, needed to build a permutation from this sequence.

Input

The first line contains integer n (1 ≤ n ≤ 3·105) — the size of the sought permutation. The second line contains n integers a1, a2, ..., an ( - 109 ≤ ai ≤ 109).

Output

Print a single number — the minimum number of moves.

Please, do not use the %lld specifier to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams or the %I64d specifier.

Examples
Input

Copy
2
3 0
Output

Copy
2
Input

Copy
3
-1 -1 2
Output

Copy
6
Note

In the first sample you should decrease the first number by one and then increase the second number by one. The resulting permutation is (2, 1).

In the second sample you need 6 moves to build permutation (1, 3, 2).

贪心地从小到大排序;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<time.h>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 500005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 100000007;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int n;
int a[maxn]; int main()
{
// ios::sync_with_stdio(0);
n = rd();
for (int i = 1; i <= n; i++)a[i] = rd();
ll tot = 0;
sort(a + 1, a + 1 + n);
for (int i = 1; i <= n; i++) {
tot += 1ll * abs(i - a[i]);
}
cout << (ll)tot << endl;
return 0;
}
D. Permutation Sum
time limit per test

3 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Permutation p is an ordered set of integers p1,  p2,  ...,  pn, consisting of n distinct positive integers, each of them doesn't exceed n. We'll denote the i-th element of permutation p as pi. We'll call number n the size or the length of permutation p1,  p2,  ...,  pn.

Petya decided to introduce the sum operation on the set of permutations of length n. Let's assume that we are given two permutations of length n: a1, a2, ..., an and b1, b2, ..., bn. Petya calls the sum of permutations a and b such permutation c of length n, where ci = ((ai - 1 + bi - 1) mod n) + 1 (1 ≤ i ≤ n).

Operation means taking the remainder after dividing number x by number y.

Obviously, not for all permutations a and b exists permutation c that is sum of a and b. That's why Petya got sad and asked you to do the following: given n, count the number of such pairs of permutations a and b of length n, that exists permutation c that is sum of a and b. The pair of permutations x, y (x ≠ y) and the pair of permutations y, x are considered distinct pairs.

As the answer can be rather large, print the remainder after dividing it by 1000000007 (109 + 7).

Input

The single line contains integer n (1 ≤ n ≤ 16).

Output

In the single line print a single non-negative integer — the number of such pairs of permutations a and b, that exists permutation c that is sum of a and b, modulo 1000000007 (109 + 7).

Examples
Input

Copy
3
Output

Copy
18
Input

Copy
5
Output

Copy
1800

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<time.h>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 500005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll ans[20];
ll fac[20];
ll a[20], b[20];
ll res;
bool use[20], vis[20];
int n;
void dfs(int pos,int up) {
if (pos == up + 1) {
res++;
}
for (int i = 1; i <= up; i++) {
if (use[i])continue;
int C = (a[pos] + i - 2) % up + 1;
if (vis[C])continue;
use[i] = 1; vis[C] = 1;
dfs(pos + 1, up);
use[i] = 0; vis[C] = 0;
}
} int main()
{
// ios::sync_with_stdio(0);
n = rd();
fac[0] = 1ll;
for (int i = 1; i <= 16; i++)fac[i] = (i*fac[i - 1]) % mod;
/* for (int j = 1; j <= 16; j++) {
for (int i = 1; i <= j; i++)a[i] = i;
ms(vis); ms(use);
res = 0; dfs(1, j);
printf("j=%d , ans=%d\n ", j, res);
}
*/
ans[1] = 1; ans[2] = 0; ans[3] = 3;
ans[4] = 0; ans[5] = 15; ans[6] = 0; ans[7] = 133;
ans[8] = 0; ans[9] = 2025; ans[10] = 0;
ans[11] = 37851; ans[12] = 0; ans[13] = 1030367;
ans[14] = 0; ans[15] = 36362925; ans[16] = 0;
cout << (ll)ans[n] * fac[n] % mod << endl; return 0;
}
												

Codeforces Round #175 (Div. 2) A~D 题解的更多相关文章

  1. Codeforces Round #612 (Div. 2) 前四题题解

    这场比赛的出题人挺有意思,全部magic成了青色. 还有题目中的图片特别有趣. 晚上没打,开virtual contest打的,就会前三道,我太菜了. 最后看着题解补了第四道. 比赛传送门 A. An ...

  2. Codeforces Round #198 (Div. 2)A,B题解

    Codeforces Round #198 (Div. 2) 昨天看到奋斗群的群赛,好奇的去做了一下, 大概花了3个小时Ak,我大概可以退役了吧 那下面来稍微总结一下 A. The Wall Iahu ...

  3. Codeforces Round #672 (Div. 2) A - C1题解

    [Codeforces Round #672 (Div. 2) A - C1 ] 题目链接# A. Cubes Sorting 思路: " If Wheatley needs more th ...

  4. Codeforces Round #614 (Div. 2) A-E简要题解

    链接:https://codeforces.com/contest/1293 A. ConneR and the A.R.C. Markland-N 题意:略 思路:上下枚举1000次扫一遍,比较一下 ...

  5. Codeforces Round #610 (Div. 2) A-E简要题解

    contest链接: https://codeforces.com/contest/1282 A. Temporarily unavailable 题意: 给一个区间L,R通有网络,有个点x,在x+r ...

  6. Codeforces Round #611 (Div. 3) A-F简要题解

    contest链接:https://codeforces.com/contest/1283 A. Minutes Before the New Year 题意:给一个当前时间,输出离第二天差多少分钟 ...

  7. Codeforces Round #499 (Div. 2) D. Rocket题解

    题目: http://codeforces.com/contest/1011/problem/D This is an interactive problem. Natasha is going to ...

  8. Codeforces Round #499 (Div. 2) C Fly题解

    题目 http://codeforces.com/contest/1011/problem/C Natasha is going to fly on a rocket to Mars and retu ...

  9. Codeforces Round #198 (Div. 2)C,D题解

    接着是C,D的题解 C. Tourist Problem Iahub is a big fan of tourists. He wants to become a tourist himself, s ...

随机推荐

  1. Oracle 环境下 GoldenGate 集成抽取(Integrated Capture)模式与传统抽取模式(Classic Capture)间的切换

    检查抽取进程模式 在 GGSCI 环境下,执行类似如下语句查看特定进程的状态. GGSCI> info <Group_Name> 其中,<Group_Name> 为进程名 ...

  2. 我的笔记,有关 PhotoShop,给自己的记忆宫殿

    一直有心学习 PhotoShop ,各种教程也 download 了不少,什么祁连山.PS大师之路.Oeasy 等等.看了吗?丫蛋的只看了前面两集!还是在博客上写写坐下笔记,好记性不如烂笔头. 0.先 ...

  3. Docker学习笔记_网上资源参考

    Docker学习,网上资源参考 1.菜鸟教程:                                                        http://www.runoob.com ...

  4. Java多线程共享变量控制

    1. 可见性 如果一个线程对共享变量值的修改,能够及时的被其他线程看到,叫做共享变量的可见性.如果一个变量同时在多个线程的工作内存中存在副本,那么这个变量就叫共享变量 2. JMM(java内存模型) ...

  5. spring.net 集成nhibernate配置文件(这里暴露了GetCurrentSession 对于 CurrentSession unbond thread这里给出了解决方法)

    我这里主要分成了两个xml来进行spring.net管理实际情况中可自己根据需要进行分类 Dao2.xml <?xml version="1.0" encoding=&quo ...

  6. VMWare、Ubuntu Server 18.04 共享文件夹

    背景:VMWare选项中配置了共享文件夹,装完Ubuntu Server 18.04在 /mnt/下都没有 hgfs文件夹,更别提共享文件夹了 参考:Ubuntu16.04版安装VMwareTools ...

  7. jquery延时刷新

    setTimeout(function(){ location.replace(location.href); },1000);

  8. 使用dom解析器对xml文档内容进行增删查改

    直接添代码: XML文档名称(one.xml) <?xml version="1.0" encoding="UTF-8" standalone=" ...

  9. 解决Spring Boot(2.1.3.RELEASE)整合spring-data-elasticsearch3.1.5.RELEASE报NoNodeAvailableException[None of the configured nodes are available

    Spring Boot(2.1.3.RELEASE)整合spring-data-elasticsearch3.1.5.RELEASE报NoNodeAvailableException[None of ...

  10. Java Thread.join()详解--父线程等待子线程结束后再结束

    目录(?)[+] 阅读目录 一.使用方式. 二.为什么要用join()方法 三.join方法的作用 join 四.用实例来理解 打印结果: 打印结果: 五.从源码看join()方法   join是Th ...