数位dp模版(dp)
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; int t;
long long dp[][][];
long long l, r;
int shu[]; long long dfs(int len,..., bool shangxian)
{
if (len == )
return ...;
if (!shangxian && dp[len][...])
return dp[len][...]; //dp数组的内容应和dfs调用参数的内容相同,除了是否达到上限
long long cnt = ;
int maxx = (shangxian ? shu[len] : );
for (int i = ; i <= maxx; i++)
{
...;
cnt += dfs(len - ,..., shangxian && i == maxx);
}
if (!shangxian)
dp[len][...] = cnt;
return cnt;
} long long solve(long long x)
{
int k = ;
while (x)
{
shu[++k] = x % ;
x /= ;
}
return dfs(k,...,)
} int main()
{
memset(dp, , sizeof(dp));
scanf("%lld%lld", &l, &r); //有些题目其实并不需要用到long long
printf("%lld\n", solve(r) - solve(l - )); //只有满足区间减法才能用 //while (1);
return ;
}
数位dp是一种计数用的dp,一般就是统计一个区间[l,r]内满足一些条件数 的个数,所谓数位dp,字面意思就是在数位上dp。数位的含义:一个数有个位,十位,百位,千位···数的每一位就是数位。
之所以要引入数位的概念完全就是为了dp。数位dp的实质就是换一种暴力枚举的方式,使新的枚举方式满足dp的性质,然后记忆化即可。
两种不同的枚举:对于一个求区间[l,r]满足条件数的个数,最简单的暴力如下:
for(int i=l;i<=r;i++)
if(right(i))
ans++;
然而这样枚举不方便记忆化,或者根本无状态可言。
数位dp模版(dp)的更多相关文章
- CodeForces 54C-First Digit Law(数位,概率dp)
题意: 给你n个区间,在每个区间里各取一个数(随机取),求这n个数中超过K%的数是首位为1数的概率 分析: dp[i][j]取前i个数,有j个是首位为1的数的概率 易知,dp[i][j]=dp[i-1 ...
- 数位dp模板 [dp][数位dp]
现在才想到要学数位dp,我是不是很弱 答案是肯定的 以一道自己瞎掰的题为模板 //题: //输入数字n //从0枚举到n,计算这n+1个数中含有两位数a的数的个数 //如12930含有两位数93 #i ...
- DP套DP HDOJ 4899 Hero meet devil(国王的子民的DNA)
题目链接 题意: 给n长度的S串,对于0<=i<=|S|,有多少个长度为m的T串,使得LCS(S,T) = i. 思路: 理解的不是很透彻,先占个坑. #include <bits/ ...
- LightOJ1044 Palindrome Partitioning(区间DP+线性DP)
问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时 ...
- 377. Combination Sum IV——DP本质:针对结果的迭代,dp[ans] <= dp[ans-i] & dp[i] 找三者关系 思考问题的维度+1,除了数据集迭代还有考虑结果
Given an integer array with all positive numbers and no duplicates, find the number of possible comb ...
- HDU4960Another OCD Patient(间隙dp,后座DP)
Another OCD Patient Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Ot ...
- [CF697D]Puzzles 树形dp/期望dp
Problem Puzzles 题目大意 给一棵树,dfs时随机等概率选择走子树,求期望时间戳. Solution 一个非常简单的树形dp?期望dp.推导出来转移式就非常简单了. 在经过分析以后,我们 ...
- bzoj 3864: Hero meet devil [dp套dp]
3864: Hero meet devil 题意: 给你一个只由AGCT组成的字符串S (|S| ≤ 15),对于每个0 ≤ .. ≤ |S|,问 有多少个只由AGCT组成的长度为m(1 ≤ m ≤ ...
- [模板] dp套dp && bzoj5336: [TJOI2018]party
Description Problem 5336. -- [TJOI2018]party Solution 神奇的dp套dp... 考虑lcs的转移方程: \[ lcs[i][j]=\begin{ca ...
随机推荐
- wya费用流
#include<bits/stdc++.h> using namespace std; #define M 1005 #define inf 0x7fffffff #define T 6 ...
- 【NOIP模拟赛】Evensgn 的债务 乱搞
biubiu~~~ 我们发现按照这道题的题意我们把一个个人的前后(欠钱,被欠钱)都缩一下,那么他对其他人没有影响,那么我们就可以依次缩完每个人,而且每个人最后的状态都是要买欠要么被欠,那么我们可以知道 ...
- 移动端H5滚动穿透解决方案
最近遇到一个很 巨恶心的问题 ios10下面 页面弹窗有滚动穿透问题 各种google 终于找到了答案,但是体验还不是很好,基本能忍受 废话不多说,上方法 最后终于想到一个处理方案,就是第一种方案的 ...
- ng父组件调用子组件的方法
https://www.pocketdigi.com/20170204/1556.html 组件之间方法的调用统一用中间人调用.数据传递直接input和output即可
- maven与gradle的对比
Java世界中主要有三大构建工具:Ant.Maven和Gradle.经过几年的发展,Ant几乎销声匿迹.Maven也日薄西山,而Gradle的发展则如日中天.笔者有幸见证了Maven的没落和Gradl ...
- oracle与mysql与sqlserver的分页
假设当前是第PageNo页,每页有PageSize条记录,现在分别用Mysql.Oracle和SQL Server分页查询student表. 1.Mysql的分页查询: 1 SELECT 2 * 3 ...
- jsonp应用
1.服务端jsonp格式数据 如客户想访问 : http://www.runoob.com/try/ajax/jsonp.php?jsonp=callbackFunction. 假设客户期望返回JSO ...
- Activiti工作流引擎核心介绍
引言 Activiti 作为一个遵从 Apache 许可的工作流和业务流程管理开源平台,其核心是基于 Java 的超快速.超稳定的 BPMN 2.0 流程引擎,强调流程服务的可嵌入性和可扩展性,同时更 ...
- HDU 5685 Problem A | 快速幂+逆元
Problem A Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total S ...
- Android无埋点数据收集SDK关键技术
前言 鉴于日益强烈的精细化运营需求,网易乐得从去年开始构建大数据平台,<<无埋点数据收集SDK>>因此立项,用于向大数据平台提供全量,完整,准确的客户端数据. << ...