【洛谷 P4342】[IOI1998]Polygon(DP)
题目链接
题意不再赘述。
这题和合并石子很类似,但是多了个乘法,而乘法是不满足“大大得大”的,因为两个非常小的负数乘起来也会很大,一个负数乘一个很大的整数会很小,所以我们需要添加一维状态,保存最大值和最小值。
\(f[i][j][0]\)表示第\(i\)个到第\(j\)个合并后的最大值,\(f[i][j][1]\)表示最小值。如果是乘法,更新时用最大值和最小值都乘一遍就行了。
还有就是,破环成链复制一倍,这样就不用枚举砍掉哪条边了,如果结果是\(f[1][n][0]\),那么砍掉的肯定是\(n-1\)这条边,以此类推。
总时间复杂度\(O(n^3)\)
#include <cstdio>
#include <iostream>
using namespace std;
#define INF 2147483647
const int MAXN = 100;
int n, f[MAXN << 1][MAXN << 1][3], a[MAXN], ans;
char op[MAXN << 1];
int main(){
cin >> n;
cin >> op[n];
for(int i = 1; i < n; ++i)
cin >> f[i][i][0] >> op[i], f[i][i][1] = f[i][i][0];
cin >> f[n][n][0], f[n][n][1] = f[n][n][0];
for(int i = n + 1; i <= (n << 1); ++i) //复制一倍
f[i][i][0] = f[i][i][1] = f[i - n][i - n][0], op[i] = op[i - n];
for(int l = 2; l <= n; ++l) //枚举长度
for(int i = 1; i <= (n << 1); ++i){ //枚举最短点
int j = i + l - 1; //算出右端点
f[i][j][1] = INF; //赋初值INF和-INF
f[i][j][0] = -INF;
for(int k = i; k < j; ++k){ //枚举中间数,更新答案
if(op[k] == 't')
f[i][j][0] = max(f[i][j][0], f[i][k][0] + f[k + 1][j][0]),
f[i][j][1] = min(f[i][j][1], f[i][k][1] + f[k + 1][j][1]);
else
f[i][j][0] = max(f[i][j][0], max(f[i][k][0] * f[k + 1][j][0], f[i][k][1] * f[k + 1][j][1])),
f[i][j][1] = min(f[i][j][1], min(f[i][k][0] * f[k + 1][j][0], f[i][k][1] * f[k + 1][j][1]));
}
}
for(int i = 1; i <= n; ++i) //记录砍掉哪些边可以得到最大答案
if(f[i][i + n - 1][0] > ans)
ans = f[i][i + n - 1][0], a[a[0] = 1] = i;
else if(f[i][i + n - 1][0] == ans)
a[++a[0]] = i;
printf("%d\n", ans);
for(int i = 1; i <= a[0]; ++i)
printf("%d ", a[i]);
return 0;
}
【洛谷 P4342】[IOI1998]Polygon(DP)的更多相关文章
- 洛谷 P4342 [IOI1998]Polygon
题目传送门 解题思路: 一道环形dp,只不过有个地方要注意,因为有乘法,两个负数相乘是正数,所以最小的数是负数,乘起来可能比最大值大,所以要记录最小值(这道题是紫题的原因). AC代码: #inclu ...
- 洛谷P1108 低价购买[DP | LIS方案数]
题目描述 “低价购买”这条建议是在奶牛股票市场取得成功的一半规则.要想被认为是伟大的投资者,你必须遵循以下的问题建议:“低价购买:再低价购买”.每次你购买一支股票,你必须用低于你上次购买它的价格购买它 ...
- NOIP2017提高组Day2T2 宝藏 洛谷P3959 状压dp
原文链接https://www.cnblogs.com/zhouzhendong/p/9261079.html 题目传送门 - 洛谷P3959 题目传送门 - Vijos P2032 题意 给定一个 ...
- 洛谷P1244 青蛙过河 DP/思路
又是一道奇奇怪怪的DP(其实是思路题). 原文戳>>https://www.luogu.org/problem/show?pid=1244<< 这题的意思给的挺模糊,需要一定的 ...
- 洛谷P3928 Sequence2(dp,线段树)
题目链接: 洛谷 题目大意在描述底下有.此处不赘述. 明显是个类似于LIS的dp. 令 $dp[i][j]$ 表示: $j=1$ 时表示已经处理了 $i$ 个数,上一个选的数来自序列 $A[0]$ 的 ...
- 洛谷P1140 相似基因 (DP)
洛谷P1140 相似基因 题目背景 大家都知道,基因可以看作一个碱基对序列.它包含了44种核苷酸,简记作A,C,G,TA,C,G,T.生物学家正致力于寻找人类基因的功能,以利用于诊断疾病和发明药物. ...
- 洛谷P2224 [HNOI2001] 产品加工 [DP补完计划,背包]
题目传送门 产品加工 题目描述 某加工厂有A.B两台机器,来加工的产品可以由其中任何一台机器完成,或者两台机器共同完成.由于受到机器性能和产品特性的限制,不同的机器加工同一产品所需的时间会不同,若同时 ...
- 洛谷1417 烹调方案 dp 贪心
洛谷 1417 dp 传送门 挺有趣的一道dp题目,看上去接近于0/1背包,但是考虑到取每个点时间不同会对最后结果产生影响,因此需要进行预处理 对于物品x和物品y,当时间为p时,先加x后加y的收益为 ...
- 洛谷1387 二维dp 不是特别简略的题解 智商题
洛谷1387 dp题目,刚开始写的时候使用了前缀和加搜索,复杂度大概在O(n ^ 3)级别,感觉这么写还是比较对得起普及/提高-的难度的..后来看了题解区各位大神的题解,开始一脸mb,之后备受启发. ...
- 洛谷 P2657 (数位DP)
### 洛谷 P2657 题目链接 ### 题目大意:给你一个数的范围 [A,B] ,问你这段区间内,有几个数满足如下条件: 1.两个相邻数位上的数的差值至少为 2 . 2.不包含前导零. 很简单的数 ...
随机推荐
- mysql 处理日期格式
DATE_FORMAT(createTime,'%Y-%m-%d %H:%i:%s') 对应格式: 2018-12-17 17:33:43 DATE_FORMAT()函数所有格式: 以后有需要在自 ...
- 「日常训练」「小专题·图论」 Frogger (1-1)
题意 分析 变形的dijkstra. 分析题意之后补充. 代码 // Origin: // Theme: Graph Theory (Basic) // Date: 080518 // Author: ...
- BZOJ 1968 [Ahoi2005]COMMON 约数研究:数学【思维题】
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1968 题意: 设f(x) = x约数的个数.如:12的约数有1,2,3,4,6,12,所以 ...
- Qt 在控件上面绘图 label,pushbutton。。。。。
最近有点时间,就研究研究Qt ,提升一下自己 我记得我在刚开始学习Qt 的时候,想要在一个控件上面绘制图形,那就要构建一个新类来调用该控件的绘图函数 今天看到了狗哥的学习博客,感觉自己好渺小啊,按照狗 ...
- 第十一篇 Python函数之定义&形参&实参&位置参数&关键字参数&可变长参数&默认参数
函数的定义:函数是为了完成某一特定功能的,函数是逻辑结构化和过程化的一种编程方法 函数的定义格式,函数一般都是有返回值的 #语法 #函数名要能反映其意义 def 函数名(参数1,参数2,参数3,... ...
- 1030 Travel Plan (30 分)(最短路径 and dfs)
#include<bits/stdc++.h> using namespace std; ; const int inf=0x3f3f3f3f; int mp[N][N]; bool vi ...
- Docker 安装Neo4j
拉取最新的neo4j镜像 docker pull neo4j 运行Neo4j 容器 docker run -it -d -p 7474:7474 -p 7687:7687 neo4j:latest 打 ...
- [leetcode-655-Print Binary Tree]
Print a binary tree in an m*n 2D string array following these rules: The row number m should be equa ...
- c#程序中的AssemblyInfo.cs
在asp.net中有一个配置文件AssemblyInfo.cs主要用来设定生成的有关程序集的常规信息dll文件的一些参数,下面是默认的AssemblyInfo.cs文件的内容具体介绍 //是否符合公共 ...
- libevent显式调用事件处理
) { SearchAcceptListen2(p_ev_arg->listen_fd,,¬ify_event,base); event_base_loop(base, EVLOO ...