[bzoj3990][SDOI2015]排序-搜索
Brief Description
小A有一个1-2N的排列A[1..2N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1<=i<=N),第i中操作为将序列从左到右划分为2{N-i+1}段,每段恰好包括2{i-1}个数,然后整体交换其中两段.小A想知道可以将数组A从小到大排序的不同的操作序列有多少个,小A认为两个操作序列不同,当且仅当操作个数不同,或者至少一个操作不同(种类不同或者操作位置不同).
Algorithm Design
首先不难发现操作顺序不影响答案, 我们只需要考察每种操作是否选中, 若选中交换哪两块就好了. 一个合法的操作序列如果有\(n\)个操作, 那么可以给答案\(contribute\ n!\). 我们从小到大考察每一种操作, 首先, 可以知道, 对于操作\(2^i\), 序列肯定已经被分成了\(2^{n-i+1}\)个有序数列, 我们首先检查是否有序, 如果有问题直接\(return\). 然后扫描每个块, 每两个块都必须是有序的, 否则要交换. 如果\(tot \geqslant 4\)那么一定不合法. 代码表达的非常清楚.
Code
#include <algorithm>
#include <cstdio>
#define ll long long
const int maxn = 1 << 13;
int n;
int a[maxn];
ll po[13];
ll ans;
bool check(int k) {
for (int i = 1; i <= (1 << (n - k)); i++)
if (a[(i - 1) * (1 << k) + 1] + (1 << (k - 1)) !=
a[(i - 1) * (1 << k) + (1 << (k - 1)) + 1])
return 0;
return 1;
}
void swap(int i, int j, int k) {
for (int m = 1; m <= k; m++)
std::swap(a[i + m - 1], a[j + m - 1]);
}
void dfs(int now, int num) {
if (now && !check(now))
return;
if (now == n) {
ans += po[num];
return;
}
dfs(now + 1, num);
int tmp[5], tot = 0;
for (int i = 1; i <= (1 << (n - now)); i += 2)
if (a[i * (1 << now) + 1] != a[(i - 1) * (1 << now) + 1] + (1 << now)) {
if (tot == 4)
return;
tmp[++tot] = i;
tmp[++tot] = i + 1;
}
if (!tot)
return;
for (int i = 1; i <= tot; i++)
for (int j = i + 1; j <= tot; j++) {
swap((1 << now) * (tmp[i] - 1) + 1, (1 << now) * (tmp[j] - 1) + 1,
1 << now);
dfs(now + 1, num + 1);
swap((1 << now) * (tmp[i] - 1) + 1, (1 << now) * (tmp[j] - 1) + 1,
1 << now);
}
}
int main() {
// freopen("input", "r", stdin);
po[0] = 1;
for (int i = 1; i <= 12; i++)
po[i] = po[i - 1] * i;
scanf("%d", &n);
for (int i = 1; i <= 1 << n; i++)
scanf("%d", &a[i]);
dfs(0, 0);
printf("%lld", ans);
}
[bzoj3990][SDOI2015]排序-搜索的更多相关文章
- BZOJ 3990: [SDOI2015]排序 [搜索]
3990: [SDOI2015]排序 题意:\(2^n\)的一个排列,给你n种操作,第i种把每\(2^{i-1}\)个数看成一段,交换任意两段.问是这个序列有序的操作方案数,两个操作序列不同,当且仅当 ...
- [BZOJ3990][SDOI2015]排序(DFS)
3990: [SDOI2015]排序 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 902 Solved: 463[Submit][Status][ ...
- [BZOJ3990]:[SDOI2015]排序(搜索)
题目传送门 题目描述 小A有一个1-${2}^{N}$的排列A[1..${2}^{N}$],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1≤i≤N), ...
- BZOJ3990 [SDOI2015]排序 【搜索】
题目 小A有一个1-2^N的排列A[1..2^N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1<=i<=N),第i中操作为将序列从左到 ...
- Bzoj3990 [SDOI2015]排序
Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 651 Solved: 338 Description 小A有一个1-2^N的排列A[1..2^N], ...
- BZOJ 3990 [SDOI2015]排序 ——搜索
[题目分析] 可以发现,操作的先后顺序是不影响结果的,那么答案就是n!的和. 可以从小的步骤开始搜索,使得每一个当前最小的块都是上升的数列,然后看看是否可行即可. 复杂度好像是4^n [代码](哪里写 ...
- BZOJ 3990: [SDOI2015]排序(搜索+剪枝)
[SDOI2015]排序 Description 小A有一个1-2^N的排列A[1..2^N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1< ...
- 006-筛选分类排序搜索查找Filter-Classificatio-Sort-Search-Find-Seek-Locate
006-筛选分类排序搜索查找Filter-Classificatio-Sort-Search-Find-Seek-Locate https://www.cnblogs.com/delphixx/p/1 ...
- 【LG3322】[SDOI2015]排序
[LG3322][SDOI2015]排序 题面 洛谷 题解 交换顺序显然不影响答案,所以每种本质不同的方案就给答案贡献次数的阶乘. 从小往大的交换每次至多\(4\)中决策,复杂度\(O(4^n)\). ...
随机推荐
- (原创)BFS广度优先算法,看完这篇就够了
BFS算法 上一篇文章讲解了DFS深度优先遍历的算法,我们说 DFS 顾名思义DEEPTH FIRET,以深度为第一标准来查找,以不撞南墙不回头的态度来发掘每一个点,这个算法思想get到了其实蛮简单. ...
- remix无法安装的解决方案
无法安装的原因: 因为remix依赖python 执行python又依赖c++的环境 所以连环导致出错 https://github.com/nodejs/node-gyp 措施一:降级处理 先清理缓 ...
- Window.open()方法参数详解总结(转)
1, 最基本的弹出窗口代码 window.open('page.html'); 2, 经过设置后的弹出窗口 window.open('page.html', 'newwindow', 'hei ...
- 【翻译】介绍 ASP.NET Core 中的 Razor Pages
介绍 ASP.NET Core 中的 Razor Pages 原文地址:Introduction to Razor Pages in ASP.NET Core 译文地址:介绍 asp. ...
- NHibernate3.3.3 学习笔记1
前言 昨天在园友的介绍下,我找了一本学习NHibernate的书:<NHibernate 3 Beginner’s Guide>. 第一章我直接跳过了,因为是英文版的看起来很吃力,且第一章 ...
- Android Studio的初体验
在机缘巧合之下遇到了安卓开发,接触了Android Studio开始了漫长的改bug的道路,以下为简易版心酸历程 首先我需要成功安装Android Studio,由于我过于叛逆以及为了避免出错于是从一 ...
- 并发(二)CyclicBarrier
CyclicBarrier 循环屏障,用于一组固定数目的线程互相等待.使用场景如下: 主任务有一组串行的执行节点,每个节点之间有一批任务,固定数量的线程执行这些任务,执行完成后,在节点完成集合后,再继 ...
- doget,doPost在底层走的是service
doget,doPost在底层走的是service 因为在源码上 先执行service方法 然后再调用doget,doPost方法
- JavaScript选择打开手机网站还是电脑网站
现在手机网站越来越普遍,类似京东.淘宝.新浪等等大家都推出了wap版,一种简单的方法判断,JavaScript选择打开手机网站还是电脑网站,如果是手机网站就让网页跳转到手机网址.如果是电脑网站,打开电 ...
- [UOJ #48]【UR #3】核聚变反应强度
题目大意:给你一串数$a_i$,求$sgcd(a_1,a_i)$,$sgcd(x,y)$表示$x,y$的次大公约数,若没有,则为$-1$ 题解:即求最大公约数的最大约数,把$a_1$分解质因数,求出最 ...