[bzoj3990][SDOI2015]排序-搜索
Brief Description
小A有一个1-2N的排列A[1..2N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1<=i<=N),第i中操作为将序列从左到右划分为2{N-i+1}段,每段恰好包括2{i-1}个数,然后整体交换其中两段.小A想知道可以将数组A从小到大排序的不同的操作序列有多少个,小A认为两个操作序列不同,当且仅当操作个数不同,或者至少一个操作不同(种类不同或者操作位置不同).
Algorithm Design
首先不难发现操作顺序不影响答案, 我们只需要考察每种操作是否选中, 若选中交换哪两块就好了. 一个合法的操作序列如果有\(n\)个操作, 那么可以给答案\(contribute\ n!\). 我们从小到大考察每一种操作, 首先, 可以知道, 对于操作\(2^i\), 序列肯定已经被分成了\(2^{n-i+1}\)个有序数列, 我们首先检查是否有序, 如果有问题直接\(return\). 然后扫描每个块, 每两个块都必须是有序的, 否则要交换. 如果\(tot \geqslant 4\)那么一定不合法. 代码表达的非常清楚.
Code
#include <algorithm>
#include <cstdio>
#define ll long long
const int maxn = 1 << 13;
int n;
int a[maxn];
ll po[13];
ll ans;
bool check(int k) {
for (int i = 1; i <= (1 << (n - k)); i++)
if (a[(i - 1) * (1 << k) + 1] + (1 << (k - 1)) !=
a[(i - 1) * (1 << k) + (1 << (k - 1)) + 1])
return 0;
return 1;
}
void swap(int i, int j, int k) {
for (int m = 1; m <= k; m++)
std::swap(a[i + m - 1], a[j + m - 1]);
}
void dfs(int now, int num) {
if (now && !check(now))
return;
if (now == n) {
ans += po[num];
return;
}
dfs(now + 1, num);
int tmp[5], tot = 0;
for (int i = 1; i <= (1 << (n - now)); i += 2)
if (a[i * (1 << now) + 1] != a[(i - 1) * (1 << now) + 1] + (1 << now)) {
if (tot == 4)
return;
tmp[++tot] = i;
tmp[++tot] = i + 1;
}
if (!tot)
return;
for (int i = 1; i <= tot; i++)
for (int j = i + 1; j <= tot; j++) {
swap((1 << now) * (tmp[i] - 1) + 1, (1 << now) * (tmp[j] - 1) + 1,
1 << now);
dfs(now + 1, num + 1);
swap((1 << now) * (tmp[i] - 1) + 1, (1 << now) * (tmp[j] - 1) + 1,
1 << now);
}
}
int main() {
// freopen("input", "r", stdin);
po[0] = 1;
for (int i = 1; i <= 12; i++)
po[i] = po[i - 1] * i;
scanf("%d", &n);
for (int i = 1; i <= 1 << n; i++)
scanf("%d", &a[i]);
dfs(0, 0);
printf("%lld", ans);
}
[bzoj3990][SDOI2015]排序-搜索的更多相关文章
- BZOJ 3990: [SDOI2015]排序 [搜索]
3990: [SDOI2015]排序 题意:\(2^n\)的一个排列,给你n种操作,第i种把每\(2^{i-1}\)个数看成一段,交换任意两段.问是这个序列有序的操作方案数,两个操作序列不同,当且仅当 ...
- [BZOJ3990][SDOI2015]排序(DFS)
3990: [SDOI2015]排序 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 902 Solved: 463[Submit][Status][ ...
- [BZOJ3990]:[SDOI2015]排序(搜索)
题目传送门 题目描述 小A有一个1-${2}^{N}$的排列A[1..${2}^{N}$],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1≤i≤N), ...
- BZOJ3990 [SDOI2015]排序 【搜索】
题目 小A有一个1-2^N的排列A[1..2^N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1<=i<=N),第i中操作为将序列从左到 ...
- Bzoj3990 [SDOI2015]排序
Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 651 Solved: 338 Description 小A有一个1-2^N的排列A[1..2^N], ...
- BZOJ 3990 [SDOI2015]排序 ——搜索
[题目分析] 可以发现,操作的先后顺序是不影响结果的,那么答案就是n!的和. 可以从小的步骤开始搜索,使得每一个当前最小的块都是上升的数列,然后看看是否可行即可. 复杂度好像是4^n [代码](哪里写 ...
- BZOJ 3990: [SDOI2015]排序(搜索+剪枝)
[SDOI2015]排序 Description 小A有一个1-2^N的排列A[1..2^N],他希望将A数组从小到大排序,小A可以执行的操作有N种,每种操作最多可以执行一次,对于所有的i(1< ...
- 006-筛选分类排序搜索查找Filter-Classificatio-Sort-Search-Find-Seek-Locate
006-筛选分类排序搜索查找Filter-Classificatio-Sort-Search-Find-Seek-Locate https://www.cnblogs.com/delphixx/p/1 ...
- 【LG3322】[SDOI2015]排序
[LG3322][SDOI2015]排序 题面 洛谷 题解 交换顺序显然不影响答案,所以每种本质不同的方案就给答案贡献次数的阶乘. 从小往大的交换每次至多\(4\)中决策,复杂度\(O(4^n)\). ...
随机推荐
- 从循环里面用QPixmap new对象很耗时联想到的
1.在循环里面用QPixmap new图片对象延迟很高,这个是通过打时间日志得出的,深层原因还不清楚: 2.自制的图片浏览器在初始化的时候会初始化自己的一个图片列表,所以要用到上面的描述.所有图片的初 ...
- 不同浏览器css引入外部字体的方式
/** * 字体后缀和浏览器有关,如下所示 * .TTF或.OTF,适用于Firefox 3.5.Safari.Opera * .EOT,适用于Internet Explorer 4.0+ * .SV ...
- Uniy 组件式泛型单例模式
我们知道,在Unity中,所有对象脚本都必须继承MonoBehavior脚本,才能使用Unity内置的脚本功能; 通常我们可以用静态类来取代单例模式,但是静态类方法的缺点是,它们必须继承最底层的类-- ...
- [P2387魔法森林
题面 题意: 给出一个图,边权有两维,a与b. 求1到n的一条路径使得路径经过的边的最大的a与b的和最小,输出最小之和. \(Solution:\) 如果做过这题,那么就显得很简单了很好想了. 又是想 ...
- LeetCode 876——链表的中间结点
1. 题目 给定一个带有头结点 head 的非空单链表,返回链表的中间结点. 如果有两个中间结点,则返回第二个中间结点. 示例 1: 输入:[1,2,3,4,5] 输出:此列表中的结点 3 (序列化形 ...
- 用JAVA写一个多线程程序,写四个线程,其中二个对一个变量加1,另外二个对一个变量减1
package com.ljn.base; /** * @author lijinnan * @date:2013-9-12 上午9:55:32 */ public class IncDecThrea ...
- MyBatis实例教程--开发环境搭建
MyBatis实例教程--开发环境搭建 准备工作: 1.mybatis 的开发环境搭建,选择: eclipse j2ee 版本,mysql 5.1 ,jdk 1.7,mybatis3.2.0.jar包 ...
- 网络流——poj1273(入门)
题目链接:排水沟 题意:现有n个排水沟和m个点(其中1是源点,m是汇点),给定n个排水沟所连接的点,求从源点到汇点的最大流量. [EK解法] #include <algorithm> #i ...
- vue2.0介绍
1.vue.js 是什么 vue(view)是一套构建用户界面的渐进式框架 Vue (pronounced /vjuː/, like view) is a progressive framework ...
- Redis数据类型及操作详解
Redis数据库,是nosql的一种.与传统关系型数据库(如mysql.sqlserver等)相比,他在处理大数据量上相当有优势,扩展性和可用性高,这是传统型数据库所达不到的. Redis是一个key ...