---恢复内容开始---

P1522 牛的旅行 Cow Tours
189
通过
502
提交
题目提供者该用户不存在
标签 图论 USACO
难度 提高+/省选-
提交该题 讨论 题解 记录

最新讨论

输出格式
题目描述

农民 John的农场里有很多牧区。有的路径连接一些特定的牧区。一片所有连通的牧区称为一个牧场。但是就目前而言,你能看到至少有两个牧区通过任何路径都不连通。这样,Farmer John就有多个牧场了。

John想在牧场里添加一条路径(注意,恰好一条)。对这条路径有以下限制:

一个牧场的直径就是牧场中最远的两个牧区的距离(本题中所提到的所有距离指的都是最短的距离)。考虑如下的有5个牧区的牧场,牧区用“*”表示,路径用直线表示。每一个牧区都有自己的坐标:

(15,15) (20,15)
D E
*-------*
| _/|
| _/ |
| _/ |
|/ |
*--------*-------*
A B C
(10,10) (15,10) (20,10)
【请将以上图符复制到记事本中以求更好的观看效果,下同】

这个牧场的直径大约是12.07106, 最远的两个牧区是A和E,它们之间的最短路径是A-B-E。

这里是另一个牧场:

*F(30,15)
/
_/
_/
/
*------*
G H
(25,10) (30,10)
在目前的情景中,他刚好有两个牧场。John将会在两个牧场中各选一个牧区,然后用一条路径连起来,使得连通后这个新的更大的牧场有最小的直径。

注意,如果两条路径中途相交,我们不认为它们是连通的。只有两条路径在同一个牧区相交,我们才认为它们是连通的。

输入文件包括牧区、它们各自的坐标,还有一个如下的对称邻接矩阵


  A B C D E F G H
A 0 1 0 0 0 0 0 0
B 1 0 1 1 1 0 0 0
C 0 1 0 0 1 0 0 0
D 0 1 0 0 1 0 0 0
E 0 1 1 1 0 0 0 0
F 0 0 0 0 0 0 1 0
G 0 0 0 0 0 1 0 1
H 0 0 0 0 0 0 1 0
其他邻接表中可能直接使用行列而不使用字母来表示每一个牧区。输入数据中不包括牧区的名字。

输入文件至少包括两个不连通的牧区。

请编程找出一条连接两个不同牧场的路径,使得连上这条路径后,这个更大的新牧场有最小的直径。输出在所有牧场中最小的可能的直径。

输入输出格式

输入格式:
第1行: 一个整数N (1 <= N <= 150), 表示牧区数

第2到N+1行: 每行两个整数X,Y (0 <= X ,Y<= 100000), 表示N个牧区的坐标。注意每个 牧区的坐标都是不一样的。

第N+2行到第2*N+1行: 每行包括N个数字(0或1) 表示如上文描述的对称邻接矩阵。

输出格式:
只有一行,包括一个实数,表示所求直径。数字保留六位小数。

只需要打到小数点后六位即可,不要做任何特别的四舍五入处理。

输入输出样例

输入样例#1:
8
10 10
15 10
20 10
15 15
20 15
30 15
25 10
30 10
01000000
10111000
01001000
01001000
01110000
00000010
00000101
00000010
输出样例#1:
22.071068
说明

翻译来自NOCOW

USACO 2.4

---恢复内容结束---

P1522 牛的旅行 Cow Tours
189
通过
502
提交
题目提供者该用户不存在
标签 图论 USACO
难度 提高+/省选-
提交该题 讨论 题解 记录

最新讨论

输出格式
题目描述

农民 John的农场里有很多牧区。有的路径连接一些特定的牧区。一片所有连通的牧区称为一个牧场。但是就目前而言,你能看到至少有两个牧区通过任何路径都不连通。这样,Farmer John就有多个牧场了。

John想在牧场里添加一条路径(注意,恰好一条)。对这条路径有以下限制:

一个牧场的直径就是牧场中最远的两个牧区的距离(本题中所提到的所有距离指的都是最短的距离)。考虑如下的有5个牧区的牧场,牧区用“*”表示,路径用直线表示。每一个牧区都有自己的坐标:

(15,15) (20,15)
D E
*-------*
| _/|
| _/ |
| _/ |
|/ |
*--------*-------*
A B C
(10,10) (15,10) (20,10)
【请将以上图符复制到记事本中以求更好的观看效果,下同】

这个牧场的直径大约是12.07106, 最远的两个牧区是A和E,它们之间的最短路径是A-B-E。

这里是另一个牧场:

*F(30,15)
/
_/
_/
/
*------*
G H
(25,10) (30,10)
在目前的情景中,他刚好有两个牧场。John将会在两个牧场中各选一个牧区,然后用一条路径连起来,使得连通后这个新的更大的牧场有最小的直径。

注意,如果两条路径中途相交,我们不认为它们是连通的。只有两条路径在同一个牧区相交,我们才认为它们是连通的。

输入文件包括牧区、它们各自的坐标,还有一个如下的对称邻接矩阵


  A B C D E F G H
A 0 1 0 0 0 0 0 0
B 1 0 1 1 1 0 0 0
C 0 1 0 0 1 0 0 0
D 0 1 0 0 1 0 0 0
E 0 1 1 1 0 0 0 0
F 0 0 0 0 0 0 1 0
G 0 0 0 0 0 1 0 1
H 0 0 0 0 0 0 1 0
其他邻接表中可能直接使用行列而不使用字母来表示每一个牧区。输入数据中不包括牧区的名字。

输入文件至少包括两个不连通的牧区。

请编程找出一条连接两个不同牧场的路径,使得连上这条路径后,这个更大的新牧场有最小的直径。输出在所有牧场中最小的可能的直径。

输入输出格式

输入格式:
第1行: 一个整数N (1 <= N <= 150), 表示牧区数

第2到N+1行: 每行两个整数X,Y (0 <= X ,Y<= 100000), 表示N个牧区的坐标。注意每个 牧区的坐标都是不一样的。

第N+2行到第2*N+1行: 每行包括N个数字(0或1) 表示如上文描述的对称邻接矩阵。

输出格式:
只有一行,包括一个实数,表示所求直径。数字保留六位小数。

只需要打到小数点后六位即可,不要做任何特别的四舍五入处理。

输入输出样例

输入样例#1:
8
10 10
15 10
20 10
15 15
20 15
30 15
25 10
30 10
01000000
10111000
01001000
01001000
01110000
00000010
00000101
00000010
输出样例#1:
22.071068
说明

翻译来自NOCOW

USACO 2.4

分析:读这道题感觉很考验我的语文能力一会最大一会最小,而且题目好像写错了?首先要把每两个点之间的最短路求出来,本题的规模很小,就用floyd算法,然后计算离每个点最远的那个点的距离,记作zuiyuan[i],那么我们要求一条路径,这条路径通过枚举就可以得到,如果两个点之间的路程为inf,并且是两个不同的点i,j,那么则连起来那么合起来的牧场的直径就是dist(i,j)+zuiyuan[i] + zuiyuan[j]为什么呢......很简单,第一个牧场的是离i最远距离,第二个牧场类同,中间只有一条路径相连,当然就是直径了,那么因为要求最小的直径,所以不断取最小值.注意题目让我们求3个牧场(合起来有一个)中的最“小”值,我感觉并不是求最小值,应该是求最大值,那么在计算zuiyuan[i]的时候记录一下就可以了.

#include <cstdio>
#include <cmath>
#include <queue>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; const int maxn = ,inf = 1e18; int n;
double x[maxn], y[maxn],d[maxn][maxn],zuiyuan[maxn],ans1,ans2;
char s[maxn]; double jisuan(double x, double y, double x1, double y1)
{
return sqrt((x - x1) * (x - x1) + (y - y1) * (y - y1));
} int main()
{
scanf("%d", &n);
for (int i = ; i <= n; i++)
scanf("%lf%lf", &x[i], &y[i]);
for (int i = ; i <= n; i++)
{
scanf("%s", s + );
for (int j = ; j <= n; j++)
{
if (s[j] == '')
d[i][j] = jisuan(x[i], y[i], x[j], y[j]);
else
d[i][j] = inf;
}
}
for (int k = ; k <= n; k++)
for (int i = ; i <= n; i++)
for (int j = ; j <= n; j++)
if (i != j && j != k && i != k) //不要写成i != j != k
if (d[i][k] != inf && d[k][j] != inf)
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
for (int i = ; i <= n; i++)
{
zuiyuan[i] = ;
for (int j = ; j <= n; j++)
if (d[i][j] != inf)
zuiyuan[i] = max(zuiyuan[i], d[i][j]);
ans2 = max(ans2, zuiyuan[i]);
}
ans1 = inf;
for (int i = ; i <= n; i++)
for (int j = ; j <= n; j++)
if (i != j && d[i][j] == inf)
ans1 = min(ans1, zuiyuan[i] + zuiyuan[j] + jisuan(x[i],y[i],x[j],y[j]));
printf("%.6lf\n", max(ans1, ans2)); return ;
}

洛谷P1522 牛的旅行 Cow Tours的更多相关文章

  1. 洛谷 P1522 牛的旅行 Cow Tours 题解

    P1522 牛的旅行 Cow Tours 题目描述 农民 John的农场里有很多牧区.有的路径连接一些特定的牧区.一片所有连通的牧区称为一个牧场.但是就目前而言,你能看到至少有两个牧区通过任何路径都不 ...

  2. 洛谷 P1522 牛的旅行 Cow Tours

    题目链接:https://www.luogu.org/problem/P1522 思路:编号,然后跑floyd,这是很清楚的.然后记录每个点在这个联通块中的最远距离. 然后分连通块,枚举两个点(不属于 ...

  3. 洛谷 - P1522 - 牛的旅行 - Cow Tours - Floyd

    https://www.luogu.org/problem/P1522 好坑啊,居然还有直径不通过新边的数据,还好不是很多. 注意一定要等Floyd跑完之后再去找连通块的直径,不然一定是INF. #i ...

  4. 洛谷 P1522 牛的旅行 Cow Tours——暴力枚举+最短路

    先上一波题目  https://www.luogu.org/problem/P1522 这道题其实就是给你几个相互独立的连通图 问找一条新的路把其中的两个连通图连接起来后使得新的图中距离最远的两个点之 ...

  5. 洛谷P1522牛的旅行——floyd

    题目:https://www.luogu.org/problemnew/show/P1522 懒于仔细分情况而直接像题解那样写floyd然后不明白最后一步max的含义了... 分开考虑怎么保证在一个内 ...

  6. Luogu P1522 牛的旅行 Cow Tours

    题目描述 农民 John的农场里有很多牧区.有的路径连接一些特定的牧区.一片所有连通的牧区称为一个牧场.但是就目前而言,你能看到至少有两个牧区通过任何路径都不连通.这样,Farmer John就有多个 ...

  7. P1522 牛的旅行 Cow Tours floyed

    题目描述 农民 John的农场里有很多牧区.有的路径连接一些特定的牧区.一片所有连通的牧区称为一个牧场.但是就目前而言,你能看到至少有两个牧区通过任何路径都不连通.这样,Farmer John就有多个 ...

  8. P1522 牛的旅行 Cow Tours

    题目描述 农民 John的农场里有很多牧区.有的路径连接一些特定的牧区.一片所有连通的牧区称为一个牧场.但是就目前而言,你能看到至少有两个牧区通过任何路径都不连通.这样,Farmer John就有多个 ...

  9. 洛谷P1522 牛的旅行

    题目描述 农民 John的农场里有很多牧区.有的路径连接一些特定的牧区.一片所有连通的牧区称为一个牧场.但是就目前而言,你能看到至少有两个牧区通过任何路径都不连通.这样,Farmer John就有多个 ...

随机推荐

  1. django的模型和基本的脚本命令

    python manage.py startproject project_name  创建一个django项目 python manage.py startapp app_name  创建一个app ...

  2. python系列7进程线程和协程

    目录 进程 线程 协程  上下文切换 前言:线程和进程的关系图 由下图可知,在每个应用程序执行的过程中,都会去产生一个主进程和主线程来完成工作,当我们需要并发的执行的时候,就会通过主进程去生成一系列的 ...

  3. struts2架构网站漏洞修复详情与利用漏洞修复方案

    struts2从开发出来到现在,很多互联网企业,公司,平台都在使用apache struts2系统来开发网站,以及应用系统,这几年来因为使用较多,被攻击者挖掘出来的struts2漏洞也越来越,从最一开 ...

  4. Excel学习路径总结

    本片涉及从入门到Excel的各个方向,包含众多资料和自己学习的心得,希望您可以仔细阅之:   入门篇: 无论是软件,还是编程,最好的入门就是通过看视频来学习,视频优点为很容易看清楚,手把手教授,不容易 ...

  5. 10 TCP 传输控制协议 UDP区别

    1.tcp和udp区别 2.TCP通信模型 生活中的电话机 如果想让别人能更够打通咱们的电话获取相应服务的话,需要做一下几件事情: 买个手机 插上手机卡 设计手机为正常接听状态(即能够响铃) 静静的等 ...

  6. ReentrantLock类的hasQueuedPredecessors方法和head节点的含义

    部分启发来源自文章:Java并发编程--Lock PART 1 1.如果h==t成立,h和t均为null或是同一个具体的节点,无后继节点,返回false.2.如果h!=t成立,head.next是否为 ...

  7. 关于ArrayList add()方法 中的引用问题

    ArrayList的add方法每次添加一个对象时,添加 的是一个对象的引用,比如进行循环操作10次  lists.add(a) 每次 a会改变 ,这时候你会发现你在lists里添加了10个相同的对象a ...

  8. jsp 路径问题和环境路径以及各种路径总结

    首先确定问题: 浏览器发送请求后,服务器会返回一个响应,但是返回的网页中,会有各种路径问题,所以在此用jsp中的属性来解决.(只是记录问题,用了不专业的术语,请见谅.) 总结: 以路径  http:/ ...

  9. anaconda常用的命令

    常用操作命令: 一.环境操作 1.查看环境管理的全部命令帮助: conda env -h 2.查看当前系统下的环境: conda info -e 3.创建环境: conda create env_na ...

  10. PAT——乙级1022:D进制的A+B &乙级1037:在霍格沃茨找零钱

    1022 D进制的A+B (20 point(s)) 输入两个非负 10 进制整数 A 和 B (≤2​30​​−1),输出 A+B 的 D (1<D≤10)进制数. 输入格式: 输入在一行中依 ...