愤怒的小鸟

Description:
给你\(n<=18\)个小猪,发射的小鸟轨迹为抛物线,求最小用多少个小鸟可以将小猪全部干掉
看到n很小,我想到了搜索,于是我用\(dfs\)枚举出,每个抛物线打掉的小猪集合然后判断他的合法性,结果TLE成了50分,mmp,瞄了一眼题解,看到他是枚举小猪,来确定抛物线,感觉妙了很多,于是我写了如下的
code:
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const double eps=0.0000001;
int t,n,m,ans;
double x[20],y[20],a[20],b[20];
bool vis[20];
inline double fabs(double x){
if(x<0)return -x;
else return x;
}
inline void dfs(int pos,int num,int cnt){
//当前决策第几个位置,构造了多少个抛物线,剩下几个独立的
if(pos>n){
ans=min(ans,num+cnt);
return ;
}
bool flag=0;
for(int i=1;i<=num;++i){//枚举是否可以被前面的抛物线覆盖
double xx=a[i]*x[pos]*x[pos]+b[i]*x[pos];
double yy=y[pos];
if(fabs(fabs(xx)-fabs(yy))<=eps&&(xx*yy>0)){
flag=1;
vis[pos]=1;//不独立
dfs(pos+1,num,cnt-1);
vis[pos]=0;
break;
}
}
if(flag)return ;
for(int i=1;i<pos;++i){
if(vis[i])continue;//不独立
double a1=x[i];
double b1=y[i];
double a2=x[pos];
double b2=y[pos];
double aa=(b1*a2-b2*a1)/(a1*a1*a2-a1*a2*a2);
double bb=(a1*a1*b2-a2*a2*b1)/(a1*a1*a2-a2*a2*a1);
if(aa>=0)continue;//不可行
a[num+1]=aa;
b[num+1]=bb;//可行
vis[i]=vis[pos]=1;//不独立了
dfs(pos+1,num+1,cnt-2);
a[num+1]=0;
b[num+1]=0;
vis[i]=vis[pos]=0;//回溯
}
dfs(pos+1,num,cnt);//自己独立
}
int main(){
scanf("%d",&t);
for(int i=1;i<=t;++i){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i)scanf("%lf%lf",&x[i],&y[i]);
ans=0x3f3f3f3f;
dfs(1,0,n);
cout<<ans<<endl;
}
}
80分还是TLE
于是乎,又瞄了一眼题解,他加了一个最优性剪枝\(num+cnt>=ans,return ;\)
于是我也加了一个,这下可惨了,一下WA成了40
注意看我的代码,\(dfs(pos+1,num,cnt-1)\text{&&}dfs(pos+1,num+1,cnt-2)\text{&&}dfs(pos+1,num,cnt)\)
\(num+cnt\)的总和是变小了,如果使用最优性剪枝,有可能将最优值剪掉
仔细比较题解和我的代码,他并不是把所有的小猪刚开始都变成独立的,这样对于一个新小猪,他的code

\(dfs(pos+1,num,cnt)\text{&&} dfs(pos+1,num+1,cnt-1)\text{&&}dfs(pos+1,num,cnt+1)\)

\(num+cnt\)的总和单调不降,可以使用最优性剪枝
我是上来就把所有小猪看成独立,而他是将小猪后放进去
code:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
using namespace std;
const double eps=1e-8;
int t,n,m,ans;
double x[20],y[20],a[20],b[20],xx[20],yy[20];
inline void dfs(int pos,int num,int cnt){
if(num+cnt>=ans)return ;//最优性剪枝
if(pos>n){
ans=num+cnt;
return ;
}//边界
bool flag=0;
for(int i=1;i<=num;++i){//枚举是否可以被前面的抛物线覆盖
double xx=a[i]*x[pos]*x[pos]+b[i]*x[pos];
double yy=y[pos];
if(fabs(xx-yy)<eps){
dfs(pos+1,num,cnt);
flag=1;
break;
}
}
if(!flag){
for(int i=1;i<=cnt;++i){
double a1=xx[i];
double b1=yy[i];
double a2=x[pos];
double b2=y[pos];
if(fabs(a1-a2)<=eps)continue;
double aa=(b1*a2-b2*a1)/(a1*a1*a2-a1*a2*a2);
double bb=(a1*a1*b2-a2*a2*b1)/(a1*a1*a2-a2*a2*a1);
if(aa>=0)continue;//不可行
a[num+1]=aa;
b[num+1]=bb;
double va=xx[i];
double vb=yy[i];
for(int j=i;j<cnt;++j){
xx[j]=xx[j+1];
yy[j]=yy[j+1];
}
dfs(pos+1,num+1,cnt-1);
for(int j=cnt;j>i;j--)
{
xx[j]=xx[j-1];
yy[j]=yy[j-1];
}
xx[i]=va;
yy[i]=vb;
}
xx[cnt+1]=x[pos];
yy[cnt+1]=y[pos];
dfs(pos+1,num,cnt+1);//自己独立
}
}
int main(){
scanf("%d",&t);
for(int i=1;i<=t;++i){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i)scanf("%lf%lf",&x[i],&y[i]);
ans=0x3f3f3f3f;
dfs(1,0,0);
cout<<ans<<endl;
}
}

搜索:状态要定好,剪枝要想好

NOIP愤怒的小鸟的更多相关文章

  1. Noip 2016 愤怒的小鸟 题解

    [NOIP2016]愤怒的小鸟 时间限制:1 s   内存限制:256 MB [题目描述] Kiana最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于(0, ...

  2. [luogu2831][noip d2t3]愤怒的小鸟_状压dp

    愤怒的小鸟 noip-d2t3 luogu-2831 题目大意:给你n个点,问最少需要多少条经过原点的抛物线将其覆盖. 注释:1<=点数<=18,1<=数据组数<=30.且规定 ...

  3. [NOIp 2016]愤怒的小鸟

    Description Input Output Sample Input 22 01.00 3.003.00 3.005 21.00 5.002.00 8.003.00 9.004.00 8.005 ...

  4. 【NOIP 2016】Day2 T3 愤怒的小鸟

    Problem Description \(Kiana\) 最近沉迷于一款神奇的游戏无法自拔. 简单来说,这款游戏是在一个平面上进行的. 有一架弹弓位于 \((0,0)\) 处,每次 \(Kiana\ ...

  5. 【NOIP】提高组2016 愤怒的小鸟

    [题意]Universal Online Judge [算法]状态压缩型DP [题解]看数据范围大概能猜到是状压了. 根据三点确定一条抛物线,枚举两个点之间的抛物线,再枚举有多少点在抛物线上(压缩为状 ...

  6. LUOGU P2831 愤怒的小鸟 (NOIP 2016)

    题面 题解 好像昨天wxl大爷讲的是O(Tn*2^n)的做法,后来没想通,就自己写了个O(Tn^2*2^n)的暴力状压, 莫名其妙过了??数量级二十亿??懵逼,可能到了CCF老爷机上就T了.dp[S] ...

  7. NOIP提高组2016 D2T3 【愤怒的小鸟】

    貌似还没有写过状压DP的题目,嗯,刚好今天考了,就拿出来写一写吧. 题目大意: 额,比较懒,这次就不写了... 思路分析: 先教大家一种判断题目是不是状压DP的方法吧. 很简单,那就是--看数据范围! ...

  8. Noip 2016

    Day1 思路: 大致是 把一个环拆成链, 找某个人无非是向右找或向左找(即对当前点加或减) 若加上要移动的位置后坐标大于总人数, 就把当前坐标减去总人数, 若减去要移动的位置后坐标小于0, 就把当前 ...

  9. 5月14日 绿城育华NOIP巨石杯试卷解析

    [题外话] 感谢UBUNTU为保存程序做出贡献:https://paste.ubuntu.com : 感谢洛谷OJ的私人题库保存题面:https://www.luogu.org : 现在我的题解的所有 ...

随机推荐

  1. 一:Java之面向对象基本概念

    1.面向对象 面向对象(Object Oriented)是一种新兴的程序设计方法,或者是一种新的程序设计规范(paradigm).其基本思想是使用对象.类.继承.封装.多态等基本概念来进行程序设计.从 ...

  2. swift入门-实现简单的登录界面

    // // AppDelegate.swift // UIWindow import UIKit @UIApplicationMain class AppDelegate: UIResponder, ...

  3. Java (JDK7)中的String常量和String.intern的实现

    在java中有constantPool常量池,常量池里存放的是类,方法,接口的等常量,而对于存放字符串常量通常存放的符号链接Symbol 或者真实的String的对象的引用. 我们来看一段简单的代码和 ...

  4. iOS开发-sqlite3使用

    SQLite3使用 SQLite简介 SQLite,是一款轻型的数据库,是遵守ACID的关系型数据库管理系统,它包含在一个相对小的C库中. SQLite3 在XCode工程中,打开targets,在B ...

  5. 使用深度学习检测DGA(域名生成算法)——LSTM的输入数据本质上还是词袋模型

    from:http://www.freebuf.com/articles/network/139697.html DGA(域名生成算法)是一种利用随机字符来生成C&C域名,从而逃避域名黑名单检 ...

  6. POJ 3279 枚举?

    思路: 1.枚举第一行 递推剩下的 判断最后一行成不成立 2. (误)高斯消元? 如何判断1最少和字典序最小- (所以这种做法好像不可取) //By SiriusRen #include <cs ...

  7. 《剑指offer》跳台阶

    一.题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 二.输入描述 输入n级台阶 三.输出描述 输出总有多少种不同跳法 四.牛客网提供的框架 cla ...

  8. affe(8) solver 优化方法

    上文提到,到目前为止,caffe总共提供了六种优化方法: Stochastic Gradient Descent (type: "SGD"), AdaDelta (type: &q ...

  9. VUE框架学习——脚手架的搭建

    #我的VUE框架学习 题记:初识VUE,觉得VUE十分的不错,故决定去深入的了解学习它,工欲善其事,必先利其器,下面是我搭建vue环境的过程! #一.项目搭建及初始化 1.安装:node.js:去官网 ...

  10. P3514 [POI2011]LIZ-Lollipop(规律+瞎搞)

    题意 给一个只有1和2的序列,每次询问有没有一个子串的和为x ( 1≤n,m≤1 000 000 )kkk ( 1≤k≤2 000 000 ) 题解 我觉得是道好题. 主要是证明一个性质:假如有一个字 ...