[HNOI2004]打砖块(敲砖块)
题目:codevs1257、洛谷P1437
题目大意:有一些砖块呈倒三角形状,每块砖敲掉后有一个分数。除第一行外,敲掉一块砖必须先把上面两块砖敲掉。现在你能敲m块砖,求能得到的最大分数。
解题思路:此题是一道非常恶心的dp。我们先把砖块“左对齐”,然后敲掉砖块(i,j)(i>1)时,就必须先敲掉(i-1,j)和(i-1,j+1)。
设$f[i][j][k]$表示打到第i列第j块砖,一共打了k块砖时所得的分数,则有$f[i][j][k]=max(f[i][j][k],f[i+1][p][k-j](j-1\le p<n-i+1)+\sum\limits_{v=1}^j a[v][i])$。其中求第i列前v块砖之和可以直接预处理出来。因为求第i列时要用到第i+1列的东西,所以枚举i时应该从大到小。答案就在dp的时候顺便求出。
时间复杂度$O(n^3m)$,然而常数很小。
注意行和列千万别搞混了。
还有codevs和洛谷的m的范围是不一样的,codevs里是$1\le m \le 500$,洛谷大概是$1\le m \le 1275$。我的f开到52*52*1300,稳过。
C++ Code:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[52][52],sum[52][52],f[52][52][1300];
int n,m;
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i){
for(int j=1;j<=n-i+1;++j){
scanf("%d",&a[i][j]);
}
}
for(int j=1;j<=n;++j){
for(int i=1;i<=n-j+1;++i)
sum[i][j]=sum[i][j-1]+a[j][i];
}
memset(f,-1,sizeof f);
f[n+1][0][0]=0;
int ans=0;
for(int i=n;i;--i){
for(int j=0;j<=n-i+1;++j)
for(int k=j;k<=m;++k)
for(int p=(j)?j-1:0;p<n-i+1;++p){
if(f[i+1][p][k-j]!=-1){
f[i][j][k]=max(f[i][j][k],f[i+1][p][k-j]+sum[i][j]);
ans=max(ans,f[i][j][k]);
}
}
}
printf("%d\n",ans);
return 0;
}
[HNOI2004]打砖块(敲砖块)的更多相关文章
- Luogu 1437 [HNOI2004]敲砖块 (动态规划)
Luogu 1437 [HNOI2004]敲砖块 (动态规划) Description 在一个凹槽中放置了 n 层砖块.最上面的一层有n块砖,从上到下每层依次减少一块砖.每块砖都有一个分值,敲掉这块砖 ...
- 洛谷 P1437 [HNOI2004]敲砖块 解题报告
P1437 [HNOI2004]敲砖块 题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下所示. 1 ...
- [HNOI2004]敲砖块
题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示. 14 15 4 3 23 33 33 7 ...
- P1437 [HNOI2004]敲砖块
题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示. 14 15 4 3 23 33 33 7 ...
- 【题解】HNOI2004敲砖块
题目传送门:洛谷1437 决定要养成随手记录做过的题目的好习惯呀- 这道题目乍看起来和数字三角形有一点像,但是仔细分析就会发现,因为选定一个数所需要的条件和另一个数所需要的条件会有重复的部分,所以状态 ...
- 洛谷P1437 [HNOI2004]敲砖块(dp)
题目背景 无 题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示. 14 15 4 3 23 ...
- yzoj P2343 & 洛谷 P1437 [HNOI2004]敲砖块
题意 在一个凹槽中放置了N层砖块,最上面的一层油N块砖,从上到下每层一次减少一块砖.每块砖都有一个分值,敲掉这块砖就能得到相应的分值,如图所示. 如果你想敲掉第i层的第j块砖的话,若i=1,你可以直接 ...
- 2018.08.16 洛谷P1437 [HNOI2004]敲砖块(二维dp)
传送门 看起来普通dp" role="presentation" style="position: relative;">dpdp像是有后效性的 ...
- 【[HNOI2004]敲砖块】
非常巧妙的\(dp\)顺序 这道题如果按照最正常的顺序来\(dp\)的话,显然是没有办法做的,后效性太大了 所以我们可以巧妙的改变\(dp\)的顺序 我们注意到一个位置\((i,j)\)要被打到的话就 ...
随机推荐
- Unity 声音播放不受Time.scale为0的影响
其他会暂停,目前发现声音不受影响 嗯,就这样.
- 路飞学城Python-Day24(practise)
本章总结 练习题 什么是C/S架构? C指的是client(客户端软件),S指的是Server(服务端软件)
- codecademy练习记录--Learn Python(70%)
############################################################################### codecademy python 5. ...
- 2017CCPC秦皇岛
热身赛 B题 Smartphone: 大整数相乘 Time Limit: 1 Second Memory Limit: 65536 KBHelianthuswolf Co. Ltd. is a mul ...
- 一、frp官方中文文档
frp 是一个可用于内网穿透的高性能的反向代理应用,支持 tcp, udp, http, https 协议. 目录 frp 的作用 开发状态 架构 使用示例 通过 ssh 访问公司内网机器 通过自定义 ...
- pytorch 6 batch_train 批训练
import torch import torch.utils.data as Data torch.manual_seed(1) # reproducible # BATCH_SIZE = 5 BA ...
- 小学生都能学会的python(深浅拷贝)
小学生都能学会的python(深浅拷贝) join() 把列表中的每一项用字符串拼接起来 # lst = ["汪峰", "吴君如", "李嘉欣&quo ...
- ubuntu/wireshark --Lua: Error during loading: [string "/usr/share/wireshark/init.lua"]:45问题解决
错误如下: 解决方案:修改init.lua 直接运行wireshark的话会报错: Lua: Error during loading:[string "/usr/share/wiresha ...
- web.xml中Filter过滤器标签说明
原文:http://www.cnblogs.com/edwardlauxh/archive/2010/03/11/1918618.html 在研究liferay框架中看到Web.xml中加入了过滤器的 ...
- Reentrant protected mode kernel using virtual 8086 mode interrupt service routines
A method for allowing a protected mode kernel to service, in virtual 8086 mode, hardware interrupts ...