[HNOI2004]打砖块(敲砖块)
题目:codevs1257、洛谷P1437
题目大意:有一些砖块呈倒三角形状,每块砖敲掉后有一个分数。除第一行外,敲掉一块砖必须先把上面两块砖敲掉。现在你能敲m块砖,求能得到的最大分数。
解题思路:此题是一道非常恶心的dp。我们先把砖块“左对齐”,然后敲掉砖块(i,j)(i>1)时,就必须先敲掉(i-1,j)和(i-1,j+1)。
设$f[i][j][k]$表示打到第i列第j块砖,一共打了k块砖时所得的分数,则有$f[i][j][k]=max(f[i][j][k],f[i+1][p][k-j](j-1\le p<n-i+1)+\sum\limits_{v=1}^j a[v][i])$。其中求第i列前v块砖之和可以直接预处理出来。因为求第i列时要用到第i+1列的东西,所以枚举i时应该从大到小。答案就在dp的时候顺便求出。
时间复杂度$O(n^3m)$,然而常数很小。
注意行和列千万别搞混了。
还有codevs和洛谷的m的范围是不一样的,codevs里是$1\le m \le 500$,洛谷大概是$1\le m \le 1275$。我的f开到52*52*1300,稳过。
C++ Code:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[52][52],sum[52][52],f[52][52][1300];
int n,m;
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i){
for(int j=1;j<=n-i+1;++j){
scanf("%d",&a[i][j]);
}
}
for(int j=1;j<=n;++j){
for(int i=1;i<=n-j+1;++i)
sum[i][j]=sum[i][j-1]+a[j][i];
}
memset(f,-1,sizeof f);
f[n+1][0][0]=0;
int ans=0;
for(int i=n;i;--i){
for(int j=0;j<=n-i+1;++j)
for(int k=j;k<=m;++k)
for(int p=(j)?j-1:0;p<n-i+1;++p){
if(f[i+1][p][k-j]!=-1){
f[i][j][k]=max(f[i][j][k],f[i+1][p][k-j]+sum[i][j]);
ans=max(ans,f[i][j][k]);
}
}
}
printf("%d\n",ans);
return 0;
}
[HNOI2004]打砖块(敲砖块)的更多相关文章
- Luogu 1437 [HNOI2004]敲砖块 (动态规划)
Luogu 1437 [HNOI2004]敲砖块 (动态规划) Description 在一个凹槽中放置了 n 层砖块.最上面的一层有n块砖,从上到下每层依次减少一块砖.每块砖都有一个分值,敲掉这块砖 ...
- 洛谷 P1437 [HNOI2004]敲砖块 解题报告
P1437 [HNOI2004]敲砖块 题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下所示. 1 ...
- [HNOI2004]敲砖块
题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示. 14 15 4 3 23 33 33 7 ...
- P1437 [HNOI2004]敲砖块
题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示. 14 15 4 3 23 33 33 7 ...
- 【题解】HNOI2004敲砖块
题目传送门:洛谷1437 决定要养成随手记录做过的题目的好习惯呀- 这道题目乍看起来和数字三角形有一点像,但是仔细分析就会发现,因为选定一个数所需要的条件和另一个数所需要的条件会有重复的部分,所以状态 ...
- 洛谷P1437 [HNOI2004]敲砖块(dp)
题目背景 无 题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示. 14 15 4 3 23 ...
- yzoj P2343 & 洛谷 P1437 [HNOI2004]敲砖块
题意 在一个凹槽中放置了N层砖块,最上面的一层油N块砖,从上到下每层一次减少一块砖.每块砖都有一个分值,敲掉这块砖就能得到相应的分值,如图所示. 如果你想敲掉第i层的第j块砖的话,若i=1,你可以直接 ...
- 2018.08.16 洛谷P1437 [HNOI2004]敲砖块(二维dp)
传送门 看起来普通dp" role="presentation" style="position: relative;">dpdp像是有后效性的 ...
- 【[HNOI2004]敲砖块】
非常巧妙的\(dp\)顺序 这道题如果按照最正常的顺序来\(dp\)的话,显然是没有办法做的,后效性太大了 所以我们可以巧妙的改变\(dp\)的顺序 我们注意到一个位置\((i,j)\)要被打到的话就 ...
随机推荐
- Java以流的方式将指定文件夹里的.txt文件全部复制到另一文件夹,并删除原文件夹中所有.txt文件
import java.io.BufferedReader; import java.io.BufferedWriter; import java.io.File; import java.io.Fi ...
- zabbix、agent端服务器图形化展示
[root@agent ~]# cat /etc/hostname agent.zabbix.com [root@agent ~]# cat /etc/hosts 127.0.0.1 localh ...
- 【Django】遇到的问题
目前的Django版本是Django version 2.0.4 Python使用的版本是Python 3.6.4 以下会将遇到的问题和各种报错信息记录 报错信息:NameError: name 'u ...
- CF343E Pumping Stations(最小割树)
没学过最小割树的出门左转. 我们已经知道了两点的最小割就是最小割树上,对应两点之间路径的权值的最小值. 找到最小割树中权值的最小的边. 那么一定是先选完一侧的点在选完另一侧的点. 因为当前边最小,那么 ...
- Hive中的一种假NULL
Hive中有种假NULL,它看起来和NULL一摸一样,但是实际却不是NULL. 例如如下这个查询: hive> desc ljn004; OK a string Time taken ...
- Swoole 源码分析——进程管理 Swoole_Process
前言 swoole-1.7.2 增加了一个进程管理模块,用来替代 PHP 的 pcntl 扩展. PHP自带的pcntl,存在很多不足,如 pcntl 没有提供进程间通信的功能 pcntl 不支持重定 ...
- openvswith Frequently Asked Questions
Open vSwitch <http://openvswitch.org> 参考地址:http://git.openvswitch.org/cgi-bin/gitweb.cgi?p=ope ...
- 【codeforces 738E】Subordinates
[题目链接]:http://codeforces.com/problemset/problem/738/E [题意] 给你一个类似树形的关系; 然后告诉你某个人头顶上有多少个上司numi; 只有fat ...
- POJ 1942
开始时竟然用了分情况讨论. 仔细思考一下,哈哈,发现不过是多重集合的组合数而已. #include <iostream> #include <cstdio> #include ...
- Linux 截图
方法一:快捷键截图 对整个屏幕截图: PrintScreen 对活动窗体截图: Alt+PrintScreen 对随意矩形截图: Shift+PrintScreen 以上三个快捷键再加上Ctrl.就会 ...