Time Limit: 1000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u

Submit
Status

Description

It is a little known fact that cows love apples. Farmer John has two apple trees (which are conveniently numbered 1 and 2) in his field, each full of apples. Bessie cannot reach the apples when they are on the tree, so she must
wait for them to fall. However, she must catch them in the air since the apples bruise when they hit the ground (and no one wants to eat bruised apples). Bessie is a quick eater, so an apple she does catch is eaten in just a few seconds.




Each minute, one of the two apple trees drops an apple. Bessie, having much practice, can catch an apple if she is standing under a tree from which one falls. While Bessie can walk between the two trees quickly (in much less than a minute), she can stand under
only one tree at any time. Moreover, cows do not get a lot of exercise, so she is not willing to walk back and forth between the trees endlessly (and thus misses some apples).




Apples fall (one each minute) for T (1 <= T <= 1,000) minutes. Bessie is willing to walk back and forth at most W (1 <= W <= 30) times. Given which tree will drop an apple each minute, determine the maximum number of apples which Bessie can catch. Bessie starts
at tree 1.

Input

* Line 1: Two space separated integers: T and W



* Lines 2..T+1: 1 or 2: the tree that will drop an apple each minute.

Output

* Line 1: The maximum number of apples Bessie can catch without walking more than W times.

Sample Input

7 2
2
1
1
2
2
1
1

Sample Output

6

Hint

INPUT DETAILS:



Seven apples fall - one from tree 2, then two in a row from tree 1, then two in a row from tree 2, then two in a row from tree 1. Bessie is willing to walk from one tree to the other twice.




OUTPUT DETAILS:



Bessie can catch six apples by staying under tree 1 until the first two have dropped, then moving to tree 2 for the next two, then returning back to tree 1 for the final two.

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int dp[1010][1010][2];
int num[1010];
int main()
{
int n,time;
int maxx=-1000;
memset(dp,0,sizeof(dp));
memset(num,0,sizeof(num));
scanf("%d%d",&n,&time);
for(int i=1;i<=n;i++)
scanf("%d",&num[i]);
for(int i=1;i<=n;i++)
{
dp[i][0][0]=dp[i-1][0][0]+(num[i]==1);
dp[i][0][1]=dp[i-1][0][1]+(num[i]==2);
for(int j=1;j<=time;j++)
{
dp[i][j][0]=max(dp[i-1][j-1][1],dp[i-1][j][0])+(num[i]==1);
dp[i][j][1]=max(dp[i-1][j-1][0],dp[i-1][j][1])+(num[i]==2);
maxx=max(maxx,max(dp[i][j][0],dp[i][j][1]));
}
}
printf("%d\n",maxx);
return 0;
}

poj--2385--Apple Catching(状态dp)的更多相关文章

  1. poj 2385 Apple Catching 基础dp

    Apple Catching   Description It is a little known fact that cows love apples. Farmer John has two ap ...

  2. POJ 2385 Apple Catching ( 经典DP )

    题意 : 有两颗苹果树,在 1~T 的时间内会有两颗中的其中一颗落下一颗苹果,一头奶牛想要获取最多的苹果,但是它能够在树间转移的次数为 W 且奶牛一开始是在第一颗树下,请编程算出最多的奶牛获得的苹果数 ...

  3. POJ 2385 Apple Catching【DP】

    题意:2棵苹果树在T分钟内每分钟随机由某一棵苹果树掉下一个苹果,奶牛站在树#1下等着吃苹果,它最多愿意移动W次,问它最多能吃到几个苹果.思路:不妨按时间来思考,一给定时刻i,转移次数已知为j, 则它只 ...

  4. POJ - 2385 Apple Catching (dp)

    题意:有两棵树,标号为1和2,在Tmin内,每分钟都会有一个苹果从其中一棵树上落下,问最多移动M次的情况下(该人可瞬间移动),最多能吃到多少苹果.假设该人一开始在标号为1的树下. 分析: 1.dp[x ...

  5. 【POJ】2385 Apple Catching(dp)

    Apple Catching Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13447   Accepted: 6549 D ...

  6. poj 2385 Apple Catching(dp)

    Description It and ) in his field, each full of apples. Bessie cannot reach the apples when they are ...

  7. poj 2385 Apple Catching(记录结果再利用的动态规划)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题意: 有两颗苹果树,在每一时刻只有其中一棵苹果树会掉苹果,而Bessie可以在很短的时 ...

  8. POJ 2385 Apple Catching

    比起之前一直在刷的背包题,这道题可以算是最纯粹的dp了,写下简单题解. 题意是说cows在1树和2树下来回移动取苹果,有移动次数限制,问最后能拿到的最多苹果数,含有最优子结构性质,大致的状态转移也不难 ...

  9. POJ 2385 Apple Catching(01背包)

    01背包的基础上增加一个维度表示当前在的树的哪一边. #include<cstdio> #include<iostream> #include<string> #i ...

  10. 动态规划:POJ No 2385 Apple Catching

    #include <iostream> #include <cstdio> #include <algorithm> #include <cstring> ...

随机推荐

  1. BZOJ——1602: [Usaco2008 Oct]牧场行走 || 洛谷—— P2912 [USACO08OCT]牧场散步Pasture Walking

    http://www.lydsy.com/JudgeOnline/problem.php?id=1602 || https://www.luogu.org/problem/show?pid=2912 ...

  2. POJ 1286

    Burnside定理. 可以用Euler函数优化. #include <iostream> #include <cstdio> #include <cstring> ...

  3. POJ 1430

    上面的估计是题解吧....呃,如果真要用到公式的话,确实没听过.... #include <iostream> #include <cstdio> #include <a ...

  4. Android Touch事件传递机制全面解析(从WMS到View树)

    转眼间近一年没更新博客了,工作一忙起来.非常难有时间来写博客了,因为如今也在从事Android开发相关的工作,因此以后的博文也会很多其它地专注于这一块. 这篇文章准备从源代码层面为大家带来Touch事 ...

  5. Linux 截图

    方法一:快捷键截图 对整个屏幕截图: PrintScreen 对活动窗体截图: Alt+PrintScreen 对随意矩形截图: Shift+PrintScreen 以上三个快捷键再加上Ctrl.就会 ...

  6. 超便携式截屏录屏软件FastStone Capture

    超便携式截屏录屏软件FastStone Capture

  7. vue组件样式添加scoped属性之后,无法被父组件修改。或者无法在本组件修改element UI样式

    在vue开发中,需要使用scoped属性避免样式的全局干扰,但是这样在父组件中是无法被修改的,不仅如此如果项目中用了UI框架比如element Ui,这个时候在本组件也无法修改样式,因为权重问题.但是 ...

  8. (转载) Android-Spinner的使用以及两种适配器

    目录视图 摘要视图 订阅 赠书 | 异步2周年,技术图书免费选      程序员8月书讯      项目管理+代码托管+文档协作,开发更流畅 Android-Spinner的使用以及两种适配器 201 ...

  9. 【算法】Dijkstra算法(单源最短路径问题)(路径还原) 邻接矩阵和邻接表实现

    Dijkstra算法可使用的前提:不存在负圈. 负圈:负圈又称负环,就是说一个全部由负权的边组成的环,这样的话不存在最短路,因为每在环中转一圈路径总长就会边小. 算法描述: 1.找到最短距离已确定的顶 ...

  10. 浅谈Android和IOS系统的差异

    总结:事件响应级别.GPU加速.进程前后台.代码运行速度.内存管理机制. 进程管理机制.内存管理机制.cpu效率.GPU加速.事件响应级别. 1.    渲染机制不同 IOS的UI渲染采用实时优先级, ...