思路:

我们可以列出几个不等式

用y0带进去变成等式

下-上 可以消好多东西

我们发现 等式左边的加起来=0

可以把每个方程看成一个点

正->负 连边

跑费用流即可

//By SiriusRen
#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define int long long
#define mem(x,y) memset(x,y,sizeof(x))
const int N=24005,M=1005,inf=0x3f3f3f3f;
int edge[N],cost[N],v[N],w[N],first[M],next[N],tot,ans;
int n,m,xx,yy,zz,least[M],with[M],vis[N],d[M],minn[M];
void Add(int x,int y,int C,int E){edge[tot]=E,cost[tot]=C,v[tot]=y,next[tot]=first[x],first[x]=tot++;}
void add(int x,int y,int C,int E){Add(x,y,C,E),Add(y,x,-C,0);}
bool tell(){
mem(with,0),mem(vis,0),mem(d,0x3f),mem(minn,0x3f);
queue<int>q;q.push(0);d[0]=0;
while(!q.empty()){
int t=q.front();q.pop();vis[t]=0;
for(int i=first[t];~i;i=next[i]){
if(d[v[i]]>d[t]+cost[i]&&edge[i]){
d[v[i]]=d[t]+cost[i],minn[v[i]]=min(minn[t],edge[i]),with[v[i]]=i;
if(!vis[v[i]])vis[v[i]]=1,q.push(v[i]);
}
}
}return d[n+1]<inf;
}
int zeng(){
for(int i=n+1;i;i=v[with[i]^1])
edge[with[i]]-=minn[n+1],edge[with[i]^1]+=minn[n+1];
return minn[n+1]*d[n+1];
}
signed main(){
mem(first,-1);
scanf("%lld%lld",&n,&m);
for(int i=1;i<=n;i++){
scanf("%lld",&least[i]);
if(least[i]-least[i-1]>0)add(0,i,0,least[i]-least[i-1]);
else add(i,n+1,0,least[i-1]-least[i]);
if(i!=n)add(i+1,i,0,inf);
}
for(int i=1;i<=m;i++)
scanf("%lld%lld%lld",&xx,&yy,&zz),add(xx,yy+1,zz,inf);
while(tell())ans+=zeng();
printf("%lld\n",ans);
}

BZOJ 1061费用流的更多相关文章

  1. bzoj 3171 费用流

    每个格拆成两个点,出点连能到的点的入点,如果是箭头指向 方向费用就是0,要不就是1,源点连所有出点,所有入点连 汇点,然后费用流 /********************************** ...

  2. bzoj 1449 费用流

    思路:先把没有进行的场次规定双方都为负,对于x胜y负 变为x + 1胜 y - 1 负所需要的代价为 2 * C[ i ] * x  - 2 * D[ i ] * y + C[ i ] + D[ i ...

  3. BZOJ 1283 费用流

    思路: 最大费用最大流 i->i+1 连边k 费用0 i->i+m (大于n的时候就连到汇) 连边1 费用a[i] //By SiriusRen #include <queue> ...

  4. bzoj 1070 费用流

    //可以网络流,但是要怎么分配每辆车让谁维修以及维修顺序呢.可以考虑每辆车维修时间对总结果的贡献,把每个修车人拆成n个点共n*m个点, //n辆车连向这n*m个点,流量1,费用k*修车时间,其中k(1 ...

  5. bzoj 2668 费用流

    我们可以把初始状态转化为目标状态这一约束转化为将黑子移动到目标状态所需要的最少步数. 除了初始点和目标点之外,剩下的点如果被经过那么就会被交换两次,所以我们将一个点拆成3个点,a,b,c,新建附加源点 ...

  6. bzoj 2245 费用流

    比较裸 源点连人,每个人连自己的工作,工作连汇,然后因为人的费用是 分度的,且是随工作数非降的,所以我们拆边,源点连到每个人s+1条边 容量是每段的件数,费用是愤怒 /**************** ...

  7. BZOJ 3280 费用流

    思路: 同BZOJ 1221 //By SiriusRen #include <queue> #include <cstdio> #include <cstring> ...

  8. BZOJ 4514 费用流

    思路: 懒得写了 http://blog.csdn.net/werkeytom_ftd/article/details/51277482 //By SiriusRen #include <que ...

  9. 从多种角度看[BZOJ 1061] [NOI 2008]志愿者招募(费用流)

    从多种角度看[BZOJ 1061] [NOI 2008]志愿者招募(费用流) 题面 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难题:为即将启动的奥运 ...

随机推荐

  1. 解决:惠普HP LaserJet Pro M126a MFP 驱动 安装失败,及其它同类打印机失败问题

    注意:如果在 Windows XP 系统下安装出错,请先安装WindowsXP KB971276-v3补丁后再安装装驱动. 下载地址:http://www.dyjqd.com/soft/KB97127 ...

  2. JavaScript图片轮播,举一反三

    图片轮播,在一些购物网站上运用的不胜枚举,下面简单介绍一下图片轮播的实现. 如图 <!doctype html> <html lang="en"> < ...

  3. mysql手册操作

    1.show table status   显示表状态 2.VERSION()   版本:CURRENT_DATE   当前日期: NOW()   当前时间:USER   当前用户 3.GRANT A ...

  4. Node.js常用express方法

    Node.js 手册查询-Express 方法 1.send方法 send 方法向浏览器发送一个响应信息,并可以智能处理不同类型的数据 send方法在输出响应时会自动进行一些设置,比如HEAD信息.H ...

  5. .Net Core 中X509Certificate2 私钥保存为 pem 的方法

    在自己签发CA证书和颁发X509证书时,私钥通过下面的方法保存为PEM 相关代码可以已经提交在了 https://github.com/q2g/q2g-helper-pem-nuget/pull/13 ...

  6. 机器学习K-Means

    1.K-Means聚类算法属于无监督学习算法. 2.原理:先随机选择K个质心,根据样本到质心的距离将样本分配到最近的簇中,然后根据簇中的样本更新质心,再次计算距离重新分配簇,直到质心不再发生变化,迭代 ...

  7. linux backtrace()详细使用说明,分析Segmentation fault

    linux backtrace()详细使用说明,分析Segmentation fault 在此之前,开发eCos应用程序时,经常碰到程序挂掉后,串口打印输出一大串让人看不懂的数据.今天才明白,原来这些 ...

  8. URAL - 1114-Boxes (分步乘法原理)

    题意; 给你n个盘子,A个红球,B个黑球,放的时候没有限制,可以不放,可以放一个红球,可以放一个黑球,也可以两个同时放,可以有剩余的球. 求一共有多少放法. 思路: 可以利用分步乘法原理,红球和黑球是 ...

  9. [kuangbin带你飞]专题1-23题目清单总结

    [kuangbin带你飞]专题1-23 专题一 简单搜索 POJ 1321 棋盘问题POJ 2251 Dungeon MasterPOJ 3278 Catch That CowPOJ 3279 Fli ...

  10. shell脚本中source无效

    发现在shell里面执行source,提示找不到命令.所以,我取搜了一些资料,总结一下. 一. 脚本中,source找不到命令--------------是因为用了sh执行脚本,而debian系统的s ...