题意:链接

方法:斜率优化DP

解析:这题BZ的数据我也是跪了,特意去网上找到当年的数据后面二十个最大的点都过了。就是过不了BZ。

看到这道题自己第一发DP是这么推得:

设f[i][j]是第j次分第i个的最大得分。

那么会推出来f[i][j]=max(f[k][j−1]+sum[i k]∗sum[1 k−1]或(sum[k i]∗sum[i+1 n]))然后我发现这个式子的复杂度非常高暂且不说。就光那个或的讨论就非常费劲。

于是想了想就放弃了这个念头。中规中矩的去想。

依照以往的思路设出状态f[i][j]代表前i个分j次的最大得分。

能推出转移方程

f[i][j]=max(f[k][j−1]+sum[k]∗(sum[j]−sum[k]))

之后对于例子手写一遍看出它的正确性后进行后面的讨论

我们发现假设n^2的枚举是肯定不行的。所以才去一种方式进行维护,由于有k的元素的存在,所以从斜率角度入手。

详细推导过程就不写了,得出的结果是:

f[j][tmp异或1]−f[k][tmp异或1]+sum[k]2−sum[j]2sum[k]−sum[j]<=sum[i]

则说明k比j优。

所以尾部就是维护g[j,k]

代码:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 100010
#define K 210
using namespace std;
typedef unsigned long long ll;
ll sum[N],a[N],f[N][2],q[N];
ll n,k;
int tmp;
ll fy(int j1,int j2,int d)
{
return f[j1][d]-f[j2][d]+sum[j2]*sum[j2]-sum[j1]*sum[j1];
}
ll fx(int j1,int j2)
{
return sum[j2]-sum[j1];
}
int main()
{
scanf("%llu%llu",&n,&k);
for(int i=1;i<=n;i++)
{
scanf("%llu",&a[i]);
sum[i]=sum[i-1]+a[i];
}
tmp=0;
for(int j=1;j<=k;j++)
{
tmp^=1;
int head=0,tail=0;
q[head]=0;
for(int i=1;i<=n;i++)
{
while(head<tail&&fy(q[head],q[head+1],tmp^1)<=fx(q[head],q[head+1])*sum[i])head++;
while(head<tail&&fy(q[tail-1],q[tail],tmp^1)*fx(q[tail],i)>=fy(q[tail],i,tmp^1)*fx(q[tail-1],q[tail]))tail--;
int t=q[head];
f[i][tmp]=f[t][tmp^1]+sum[t]*(sum[i]-sum[t]);
q[++tail]=i;
}
}
printf("%llu\n",f[n][tmp]);
}

BZOJ 3675 APIO2014 序列切割 斜率优化DP的更多相关文章

  1. BZOJ 3675 [Apio2014]序列分割 (斜率优化DP)

    洛谷传送门 题目大意:让你把序列切割k次,每次切割你能获得 这一整块两侧数字和的乘积 的分数,求最大的分数并输出切割方案 神题= = 搞了半天也没有想到切割顺序竟然和答案无关...我太弱了 证明很简单 ...

  2. bzoj3675[Apio2014]序列分割 斜率优化dp

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 3508  Solved: 1402[Submit][Stat ...

  3. 【bzoj3675】[Apio2014]序列分割 斜率优化dp

    原文地址:http://www.cnblogs.com/GXZlegend/p/6835179.html 题目描述 小H最近迷上了一个分隔序列的游戏.在这个游戏里,小H需要将一个长度为n的非负整数序列 ...

  4. [APIO2014]序列分割 --- 斜率优化DP

    [APIO2014]序列分割 题目大意: 你正在玩一个关于长度为\(n\)的非负整数序列的游戏.这个游戏中你需要把序列分成\(k+1\)个非空的块.为了得到\(k+1\)块,你需要重复下面的操作\(k ...

  5. BZOJ 3675: [Apio2014]序列分割( dp + 斜率优化 )

    WA了一版... 切点确定的话, 顺序是不会影响结果的..所以可以dp dp(i, k) = max(dp(j, k-1) + (sumn - sumi) * (sumi - sumj)) 然后斜率优 ...

  6. 【斜率DP】BZOJ 3675:[Apio2014]序列分割

    3675: [Apio2014]序列分割 Time Limit: 40 Sec  Memory Limit: 128 MBSubmit: 1066  Solved: 427[Submit][Statu ...

  7. P3648 [APIO2014]序列分割 斜率优化

    题解:斜率优化\(DP\) 提交:\(2\)次(特意没开\(long\ long\),然后就死了) 题解: 好的先把自己的式子推了出来: 朴素: 定义\(f[i][j]\)表示前\(i\)个数进行\( ...

  8. BZOJ 1010: 玩具装箱toy (斜率优化dp)

    Description P教授要去看奥运,但是他舍不下他的玩具,于是他决定把所有的玩具运到北京.他使用自己的压缩器进行压缩,其可以将任意物品变成一堆,再放到一种特殊的一维容器中.P教授有编号为1... ...

  9. BZOJ 1010 [HNOI2008]玩具装箱 (斜率优化DP)

    题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=1010 思路 [斜率优化DP] 我们知道,有些DP方程可以转化成DP[i]=f[j]+x[i ...

随机推荐

  1. 【模板】后缀排序(SA数组)

    [模板]后缀排序 题目背景 这是一道模板题. 题目描述 读入一个长度为 \(n\) 的由大小写英文字母或数字组成的字符串,请把这个字符串的所有非空后缀按字典序从小到大排序,然后按顺序输出后缀的第一个字 ...

  2. HNU 12876 Quite Good Numbers 完美数变形

    筛法是一种很快的方法,贴代码纪念一下. 做法很像筛法 #include <iostream> #include <cstdio> #include <cstring> ...

  3. Varnish 问题点 与 技术方案 Varnish 优劣分析

      A10 有没有能做热点统计   1 Varnish 分布式 HA  (目前没有HA) 2 Varnish 热点监控     (建议热点需要外部插件统计,API的话目前并木有发现,但是他自带一个伪热 ...

  4. OpenCV图像处理篇之边缘检測算子

    3种边缘检測算子 灰度或结构等信息的突变位置是图像的边缘,图像的边缘有幅度和方向属性.沿边缘方向像素变化缓慢,垂直边缘方向像素变化剧烈.因此,边缘上的变化能通过梯度计算出来. 一阶导数的梯度算子 对于 ...

  5. vector容器的实现

    简单实现了构造.析构.push_back.pop_back.operator=.operator[].clear等函数 template<class T> class my_vector ...

  6. NYOJ 541 最强的战斗力

    最强DE 战斗力 时间限制:1000 ms  |  内存限制:65535 KB 难度: 描写叙述 春秋战国时期,赵国地大物博,资源很丰富.人民安居乐业.但很多国家对它虎视眈眈.准备联合起来对赵国发起一 ...

  7. OpenCV学习笔记09--通过cvPtr2D或指针算法绘制图形

    练习:创建一个1000*1000的三通道图像,将其元素所有置0.以(200,50)和(400,200)为顶点绘制一个绿色平面 我们能够用两种方法来实现这一功能,一个是使用cvPtr2D,可是因为使用了 ...

  8. 小贝_php+redis类型组合使用

    php_redis类型组合使用 一.类型组合说明 经过前面的文章介绍.已经知道redis有字符串.集合.列表.hash等内置数据类型. 这里以,无序集合为例,进行说明. 集合 set1的简图 1.从简 ...

  9. 【Linux】JDK+Eclipse 搭建C/C++开发环境

    注:本文所提供的参考示例是在CentOS Linux环境下的安装,不保证适用于其他版本的Linux系统. ·    安装前的注意事项 编译源代码是需要对应的代码编译工具的,本文中安装的Eclipse只 ...

  10. 21.MFC进制转换工具

    相关代码:链接:https://pan.baidu.com/s/1pKVVUZL 密码:e3vf #include <stdlib.h> #include <stdio.h> ...