http://poj.org/problem?id=2891

Time Limit: 1000MS   Memory Limit: 131072K
Total Submissions: 16849   Accepted: 5630

Description

Elina is reading a book written by Rujia Liu, which introduces a strange way to express non-negative integers. The way is described as following:

Choose k different positive integers a1a2, …, ak. For some non-negative m, divide it by every ai (1 ≤ i ≤ k) to find the remainder ri. If a1a2, …, ak are properly chosen, m can be determined, then the pairs (airi) can be used to express m.

“It is easy to calculate the pairs from m, ” said Elina. “But how can I find m from the pairs?”

Since Elina is new to programming, this problem is too difficult for her. Can you help her?

Input

The input contains multiple test cases. Each test cases consists of some lines.

  • Line 1: Contains the integer k.
  • Lines 2 ~ k + 1: Each contains a pair of integers airi (1 ≤ i ≤ k).

Output

Output the non-negative integer m on a separate line for each test case. If there are multiple possible values, output the smallest one. If there are no possible values, output -1.

Sample Input

2
8 7
11 9

Sample Output

31

Hint

All integers in the input and the output are non-negative and can be represented by 64-bit integral types.

敲模板磨时间、、

 #include <algorithm>
#include <cstdio> using namespace std; #define LL long long
const int N();
LL n,a[N],m[N]; LL exgcd(LL a,LL b,LL &x,LL &y)
{
if(!b)
{
x=; y=;
return a;
}
LL ret=exgcd(b,a%b,x,y),tmp=x;
x=y; y=tmp-a/b*y;
return ret;
}
LL CRT()
{
LL ret=m[],tot=a[];
for(int i=;i<=n;i++)
{
LL x,y,tt=a[i],c=m[i]-ret;
LL gcd=exgcd(tot,tt,x,y);
if(c%gcd) return -;
x=x*c/gcd;
LL mod=tt/gcd;
x=(x%mod+mod)%mod;
ret+=x*tot; tot*=mod;
}
if(!ret) ret+=tot;
return ret;
} int main()
{
for(;~scanf("%lld",&n);)
{
for(int i=;i<=n;i++)
scanf("%lld%lld",a+i,m+i);
printf("%lld\n",CRT());
}
return ;
}

POJ——T 2891 Strange Way to Express Integers的更多相关文章

  1. 【POJ】2891 Strange Way to Express Integers

    http://poj.org/problem?id=2891 题意:求最小的$x$使得$x \equiv r_i \pmod{ a_i }$. #include <cstdio> #inc ...

  2. poj 2891 Strange Way to Express Integers (非互质的中国剩余定理)

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 9472   ...

  3. poj——2891 Strange Way to Express Integers

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 16839 ...

  4. [POJ 2891] Strange Way to Express Integers

    Strange Way to Express Integers Time Limit: 1000MS   Memory Limit: 131072K Total Submissions: 10907 ...

  5. POJ 2891 Strange Way to Express Integers(拓展欧几里得)

    Description Elina is reading a book written by Rujia Liu, which introduces a strange way to express ...

  6. poj 2891 Strange Way to Express Integers(中国剩余定理)

    http://poj.org/problem?id=2891 题意:求解一个数x使得 x%8 = 7,x%11 = 9; 若x存在,输出最小整数解.否则输出-1: ps: 思路:这不是简单的中国剩余定 ...

  7. POJ 2891 Strange Way to Express Integers 中国剩余定理 数论 exgcd

    http://poj.org/problem?id=2891 题意就是孙子算经里那个定理的基础描述不过换了数字和约束条件的个数…… https://blog.csdn.net/HownoneHe/ar ...

  8. POJ 2891 Strange Way to Express Integers 中国剩余定理MOD不互质数字方法

    http://poj.org/problem?id=2891 711323 97935537 475421538 1090116118 2032082 120922929 951016541 1589 ...

  9. [poj 2891] Strange Way to Express Integers 解题报告(excrt扩展中国剩余定理)

    题目链接:http://poj.org/problem?id=2891 题目大意: 求解同余方程组,不保证模数互质 题解: 扩展中国剩余定理板子题 #include<algorithm> ...

随机推荐

  1. [HNOI2012]矿场搭建(割点)

    [HNOI2012]矿场搭建 题目描述 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤点设立救援出 ...

  2. iOS 开发百问(5)

    42. 警告:Multiplebuild commands for output file target引用了名字反复的资源 找到当前的target,展开之后.找到CopyBundle Resourc ...

  3. CheckBox:屏蔽setChecked方法对OnCheckedChangeListener的影响

    对于CheckBox的OnCheckedChangeListener,有两种情况下会被触发: (1)用户点击了一下CheckBox: (2)代码中调用了setChecked(boolean check ...

  4. hdu4691 Front compression(后缀数组)

    Front compression Time Limit: 5000/5000 MS (Java/Others) Memory Limit: 102400/102400 K (Java/Others) ...

  5. css footer not displaying at the bottom of the page

    https://stackoverflow.com/questions/15960290/css-footer-not-displaying-at-the-bottom-of-the-page The ...

  6. xml Data Type Methods in sql server

    nodes() Method (xml Data Type) https://docs.microsoft.com/en-us/sql/t-sql/xml/nodes-method-xml-data- ...

  7. dubbo问题求解

    各位大牛好,小弟公司开发中遇到一个很奇怪的问题望有大神指教一下,实在是已经搞了3天了一点头绪没有,公司使用的是eclipse+maven+zookeper+dubbo主要是dubbo的问题,刚开始使用 ...

  8. [工具] UltraEdit使用技巧汇总

    ltraEdit是一套功能强大的文本编辑器,可以编辑文本.十六进制.ASCII码,可以取代记事本,内建英文单字检查.C++及VB指令突显,可同时编辑多个文件,而且即使开启很大的文件速度也不会慢.说到编 ...

  9. 微信公众号开发(二)获取AccessToken、jsapi_ticket

    Access Token 在微信公众平台接口开发中,Access Token占据了一个很重要的地位,相当于进入各种接口的钥匙,拿到这个钥匙才有调用其他各种特殊接口的权限. access_token是公 ...

  10. 开源系统源码分析(filter.class.php)

    <?php class baseValidater { //最大参数个数 const MAX_ARGS=3; public static function checkBool($var) { r ...