打印全排列和stl::next_permutation
打印全排列是个有点挑战的编程问题。STL提供了stl::next_permutation完美的攻克了这个问题。
可是,假设不看stl::next_permutation,尝试自己解决,怎么做?
非常自然地,使用递归的办法:
1. 单个元素的排列仅仅有1个。
2. 多个元素的排列能够转化为:
以每一个元素为排列的首个元素,加上其它元素的排列。
有了思路,就能够编码了。
第一个版本号:
prefix, int set[], int n)
i<n; ++i)
= set[i];
== 1)
" ;
shift set[0,i) to right by 1
j>=0; --j)
shift set[0,i) to left by 1
j<i; ++j)
測试:
myints, 4);
通过。
这样的方法的缺点是产生了大量的string对象。
怎么避免呢?
第二个版本号:
i<n; ++i)
= set[i];
== n-1)
it is possible use callback here instead of printing a permutation
j<n; ++j)
' ;
shift set[from,i) to right by 1
j>=from; --j)
shift set[from,i) to left by 1
j<i; ++j)
測试:
通过。
第二个版本号相比第一个版本号的还有一个改进是能够非常easy地改变成回调函数的形式,扩展函数的用途。而不不过打印排列。
似乎非常不错了。
可是和stl::next_permutation相比,以上的方案就太逊了。
1. stl::next_permutation支持部分排列,而不必是全排列。你能够从不论什么一个排列開始,能够随时退出next_permutation循环。
2. stl::next_permutation支持多重集的排列。比如:
= {1,2,2,2};
' << myints[1] << ' ' <<
myints[2] << ' ' << myints[3]
<< '\n';
std::next_permutation(myints,myints+4) );
输出:
1 2 2 2
2 1 2 2
2 2 1 2
2 2 2 1
没有反复的排列。
stl::next_permutation这么强大,非常值得看看它到底是怎么实现的。
_First, _BidIt _Last)
and test for pure ascending, using operator<
== _Last || _First == --_Next)
; )
find rightmost element smaller than successor
*_Next1))
swap with rightmost element that's smaller, flip suffix
!_DEBUG_LT(*_Next, *--_Mid); )
== _First)
pure descending, flip all
_First, _BidIt _Last)
and test for pure ascending, using operator<
_CHECKED_BASE(_Last));
代码不长,但须要研究才干理解。
非常多算法都是这种。
这个算法能够概括为:
假设仅仅有零个或一个元素,返回false,表示回到全排列的起点。
否则。从右边開始。找到第一个不是递减的元素,即E(i) < E(i+1),从E(i+1)一直到E(n)都是不增的。
假设找到。从右边開始。找到大于E(i)的那个元素E(x)【一定会找到】,交换E(i)和E(x),然后把E[i+1, n]范围内的元素反转。
返回true。
假设找不到,把整个范围内的元素反转,返回false,表示回到全排列的起点。
为什么这个算法可行呢?看以下1 2 3 4的全排列。
能够非常easy地看到,
假设把每一个排列看成一个数,那么下一个排列大于上一个排列。
由上可知,第一个排列是最小排列【不减排列】。最后一个排列是最大排列【不增排列】。
最小排列和最大排列是反序的关系。
算法的关键:从E(i+1)一直到E(n)都是不增的。
这个特性说明,这一范围的元素的排列是一个最大排列,下一个排列必然是找到这一范围内大于这一范围的前一元素的元素,交换这两个元素,交换后E[i+1, n]仍为不增排列【最大排列】。反转之后,变成最小排列。这样处理后得到的排列正好是E[0,n]的下一个排列。
1 2 3 4
1 2 4 3
1 3 2 4
1 2
1 4 2 3
1 4 3 2
2 1 3 4
2 1 4 3
2 3 1 4
2 3 4 1
2 4 1 3
2 4 3 1
3 1 2 4
3 1 4 2
3 2 1 4
3 2 4 1
3 4 1 2
3 4 2 1
4 1 2 3
4 1 3 2
4 2 1 3
4 2 3 1
4 3 1 2
4 3 2 1
打印全排列和stl::next_permutation的更多相关文章
- STL - next_permutation 全排列函数
学习: http://blog.sina.com.cn/s/blog_9f7ea4390101101u.html http://blog.csdn.net/ac_gibson/article/deta ...
- STL next_permutation(a,a+n) 生成一个序列的全排列。满足可重集。
/** 题目: 链接: 题意: 思路: */ #include <iostream> #include <cstdio> #include <vector> #in ...
- STL next_permutation 全排列
调用方法: ]={,,,}; )){ ;i<;i++) printf("%d ",arr[i]); puts(""); } 测试效果: 注:可以看到1 2 ...
- STL next_permutation和prev_permutation函数
利用next_permutation实现全排列升序输出,从尾到头找到第一个可以交换的位置, 直接求到第一个不按升序排列的序列. #include <iostream> #include & ...
- STL next_permutation 算法原理和自行实现
目标 STL中的next_permutation 函数和 prev_permutation 两个函数提供了对于一个特定排列P,求出其后一个排列P+1和前一个排列P-1的功能. 这里我们以next_pe ...
- STL next_permutation 算法原理和实现
转载自:https://www.cnblogs.com/luruiyuan/p/5914909.html 目标 STL中的next_permutation 函数和 prev_permutation 两 ...
- C++ 全排列函数 std::next_permutation与std::prev_permutation
C++ STL中提供了std::next_permutation与std::prev_permutation可以获取数字或者是字符的全排列,其中std::next_permutation提供升序.st ...
- 全排列(STL)
输入一个整数n,输出1~n的全排列(是不是很水) 在此记录stl做法 #include<bits/stdc++.h> using namespace std; ]; int main(){ ...
- C++中全排列算法函数next_permutation的使用方法
首先,先看对next_permutation函数的解释: http://www.cplusplus.com/reference/algorithm/next_permutation/?kw=next_ ...
随机推荐
- 怎样避免使用Intent.FLAG_ACTIVITY_NEW_TASK | Intent.FLAG_ACTIVITY_CLEAR_TASK之后的黑屏问题
在自己的项目中.我须要使用Intent.FLAG_ACTIVITY_NEW_TASK | Intent.FLAG_ACTIVITY_CLEAR_TASK来開始新的activity同一时候移除之前全部的 ...
- VS2013找不到SDKDDKVer.h
今天在升级vs2010 的project的时候遇到了一个这种问题.提示:找不到SDKDKVer.h 通过查找资料发现,原来是vs版本号之间Windows SDK的路径宏定义不同,有些坑. 网上有人说能 ...
- 读配置文件能够保持顺序的 Java Properties 类
序 前几天,公司项目中有一个需求是读取配置文件的.并且最好可以保证载入到内存中的顺序可以和配置文件里的顺序一致,可是.假设使用 jdk 中提供的 Properties 类的话,读取配置文件后.载入到内 ...
- Sublime text3 Emmet使用
Emmet需要配置pyv8 进入 https://github.com/emmetio/pyv8-binaries 下载解压文件放入Sublime Installed Packages下面 就可以使用 ...
- Redis学习笔记(十) 命令进阶:事务操作
原文链接:http://doc.redisfans.com/transaction/index.html Redis中也提供了对于事务的支持,由于Redis是单线程处理Client的请求,所以实现起来 ...
- Load和CPU利用率是如何算出来的
相信很多人都对Linux中top命令里“load average”这一栏困惑过,到底什么是Load,Load代表了什么含义,Load高会有什么后果?“%CPU”这一栏为什么会超过100%,它是如何计算 ...
- python2 与 python3 语法区别--转
原文地址:http://old.sebug.net/paper/books/dive-into-python3/porting-code-to-python-3-with-2to3.html 使用2t ...
- ASP.NET MVC+Bootstrap分页Helper
<div class="pagination"> <ul> //************分页HTML********* </ul> </d ...
- Win32 CRT and MFC 清单文件.manifest配制
Demo.exe.manifest <?xml version="1.0" encoding="UTF-8" standalone="yes&q ...
- for循环的写法及优化
最近这几天在研究浏览器性能的时候发现了一些小知识,在此做一总结: 其中经常用到的for循环有:正常的for循环,for in循环,for of循环等,但是对于正常的for循环可以做一下优化,使得其在执 ...