本系列文章由 @yhl_leo 出品,转载请注明出处。

文章链接: http://blog.csdn.net/yhl_leo/article/details/50624471


依照教程:深入MNIST教程Deep MNIST for Experts(英文官网),测试代码及结果如下:

# load MNIST data
import input_data
mnist = input_data.read_data_sets("Mnist_data/", one_hot=True) # start tensorflow interactiveSession
import tensorflow as tf
sess = tf.InteractiveSession() # weight initialization
def weight_variable(shape):
initial = tf.truncated_normal(shape, stddev=0.1)
return tf.Variable(initial) def bias_variable(shape):
initial = tf.constant(0.1, shape = shape)
return tf.Variable(initial) # convolution
def conv2d(x, W):
return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
# pooling
def max_pool_2x2(x):
return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') # Create the model
# placeholder
x = tf.placeholder("float", [None, 784])
y_ = tf.placeholder("float", [None, 10])
# variables
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10])) y = tf.nn.softmax(tf.matmul(x,W) + b) # first convolutinal layer
w_conv1 = weight_variable([5, 5, 1, 32])
b_conv1 = bias_variable([32]) x_image = tf.reshape(x, [-1, 28, 28, 1]) h_conv1 = tf.nn.relu(conv2d(x_image, w_conv1) + b_conv1)
h_pool1 = max_pool_2x2(h_conv1) # second convolutional layer
w_conv2 = weight_variable([5, 5, 32, 64])
b_conv2 = bias_variable([64]) h_conv2 = tf.nn.relu(conv2d(h_pool1, w_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2) # densely connected layer
w_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024]) h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, w_fc1) + b_fc1) # dropout
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob) # readout layer
w_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10]) y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop, w_fc2) + b_fc2) # train and evaluate the model
cross_entropy = -tf.reduce_sum(y_*tf.log(y_conv))
train_step = tf.train.AdagradOptimizer(1e-4).minimize(cross_entropy)
correct_prediction = tf.equal(tf.argmax(y_conv, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
sess.run(tf.initialize_all_variables())
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_:batch[1], keep_prob:1.0})
print "step %d, train accuracy %g" %(i, train_accuracy)
train_step.run(feed_dict={x:batch[0], y_:batch[1], keep_prob:0.5}) print "test accuracy %g" % accuracy.eval(feed_dict={x:mnist.test.images, y_:mnist.test.labels, keep_prob:1.0})

其中各个操作的含义,文档里讲解的比较清楚,就不累述了,结果截图:

可以看出,训练结果准确率为93.22%,并不是教程里说的99.2%~

(有读者提议将步长修改更小,测试后效果仍然不佳)

将上述代码中,训练优化方法修改为梯度下降算法:

#train_step = tf.train.AdagradOptimizer(1e-4).minimize(cross_entropy)
train_step = tf.train.GradientDescentOptimizer(1e-3).minimize(cross_entropy)

训练结果精度为:99.25%与教程中的结果一致。

深入MNIST code测试的更多相关文章

  1. Tensorflow MNIST 数据集测试代码入门

    本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50614444 测试代码已上传至GitH ...

  2. highway network及mnist数据集测试

    先说结论:没经过仔细调参,打不开论文所说代码链接(fq也没打开),结果和普通卷积网络比较没有优势.反倒是BN对网络起着非常重要的作用,达到了99.17%的测试精度(训练轮数还没到过拟合). 论文为&l ...

  3. mxnet卷积神经网络训练MNIST数据集测试

    mxnet框架下超全手写字体识别—从数据预处理到网络的训练—模型及日志的保存 import numpy as np import mxnet as mx import logging logging. ...

  4. Tensorflow MNIST浅层神经网络的解释和答复

    本系列文章由 @yhl_leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/51416540 看到之前的一篇博文:深入 ...

  5. Caffe初试(二)windows下的cafee训练和测试mnist数据集

    一.mnist数据集 mnist是一个手写数字数据库,由Google实验室的Corinna Cortes和纽约大学柯朗研究院的Yann LeCun等人建立,它有60000个训练样本集和10000个测试 ...

  6. 从零到一:caffe-windows(CPU)配置与利用mnist数据集训练第一个caffemodel

    一.前言 本文会详细地阐述caffe-windows的配置教程.由于博主自己也只是个在校学生,目前也写不了太深入的东西,所以准备从最基础的开始一步步来.个人的计划是分成配置和运行官方教程,利用自己的数 ...

  7. tensorflow笔记(五)之MNIST手写识别系列二

    tensorflow笔记(五)之MNIST手写识别系列二 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7455233.html ...

  8. [测试篇]MarkDown之代码块行号+折叠图片

    对比测试代码编号 $(function(){ $('pre code').each(function(){ texts = $(this).text().replace(/&(?!#?[a-z ...

  9. 深度学习常用数据集 API(包括 Fashion MNIST)

    基准数据集 深度学习中经常会使用一些基准数据集进行一些测试.其中 MNIST, Cifar 10, cifar100, Fashion-MNIST 数据集常常被人们拿来当作练手的数据集.为了方便,诸如 ...

随机推荐

  1. arcgis server10.2.2公布地图基础服务的详细步骤

    1.直接打开制作好的.mxd文档,比方这里: 2.打开mxd文档之后.打开菜单:file-share as -services 弹出地图公布服务的界面: 点击publish之后,耐心的等待一段时间,地 ...

  2. solaris x86安装ORACLE 11.2.0.3软件时因SWAP不足报错: INFO: ld: fatal: mmap anon failed

    1.ORACLE软件安装到86%时报错,图忘截了.日志例如以下: /oracle/u01/app/oracle/product/11.2.0/ INFO: db_1/lib/sysliblist` - ...

  3. hdoj--迷宫问题

    迷宫问题 Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 131072/65536K (Java/Other) Total Submiss ...

  4. EOJ 1114 素数环

    题意 一个由自然数 1…n (n≤18) 素数环就是如下图所示,环上任意两个节点上数值之和为素数. 1 / \   4  2 \ /    3 Input 输入只有一个数 n,表示你需要建立一个 1… ...

  5. [Pulgin] 利用swfupload实现java文件批量上传

    URL:http://blog.csdn.net/xuweilinjijis/article/details/8876305 之前在网上找过很多相关资料,很多所谓的批量上传都是忽悠人的,真正的批量上传 ...

  6. Class工具类

    Class工具类,提供操作class类的方法,源码如下: import java.io.File; import java.io.FileFilter; import java.io.IOExcept ...

  7. C#缓存

    最近在学习缓存的知识,博客园中的 缓存资料 觉得信息不错值得学习

  8. maven nexus memory optimization

    #链接地址:https://help.sonatype.com/repomanager3/system-requirements#filehandles While starting Nexus I ...

  9. Ajax+Struts做登录判断

    Action类里: /* * 登录 */ public ActionForward doLogin(ActionMapping mapping,ActionForm form,HttpServletR ...

  10. Array.of()和Array()区别

    Array.of方法用于将一组值,转换为数组. Array.of(3, 11, 8) // [3,11,8] Array.of(3) // [3] Array.of(3).length // 1 这个 ...